Abstract:
Method and system for providing a dynamic network configuration and management based on defining and applying high level administrative intents including retrieving one or more attributes associated with one or more logical groups in a network, determining one or more network policies based on the one or more retrieved attributes, associating the one or more logical groups to a respective network group identifier, and generating a network group list associated with the one or more network group identifiers, is disclosed.
Abstract:
In one embodiment, a method for processing encrypted wireless station data at a network device includes receiving from an access point, one or more frames comprising wireless station data fragmented into a plurality of encrypted protocol data units. The frames are configured to identify the encrypted protocol units associated with the wireless station data. The method further includes decrypting the encrypted protocol data units and forwarding the wireless station data. An apparatus for processing encrypted wireless station data, a method for transmitting encrypted multicast data for a wireless client, and a method for processing encrypted wireless station data at an access point are also disclosed.
Abstract:
A method and apparatus for handoff of a wireless client from a first network device to a second network device in a wired network are disclosed. In one embodiment, the method includes receiving data from a new wireless client at the second network device and transmitting a request for a route update for the new wireless client to the wired network. Prior to network convergence for the route update, data traffic for the new wireless client is received from the first network device and forwarded to the new wireless client. Context information for the new wireless client is transmitted from the second network device to other network devices in a proximity group of the second network device.
Abstract:
Methods and articles of manufacture relating to hash tables and in particular to minimally disruptive hash tables are disclosed. In one aspect, the method includes creating the hash table with a plurality of hash table buckets, wherein a count of the plurality of hash table buckets is greater than or equal to a maximum count of elements to be stored in the hash table over a period in which the hash table is used, storing a plurality of elements in the plurality of hash table buckets such that each hash table bucket has one of the plurality of elements, and adding a new element to the hash table. Adding the new element includes determining, using a hash function, a plurality of hash table indexes and inserting the new element in the identified hash table buckets by replacing existing elements stored in the hash table buckets.
Abstract:
A method of client authentication that includes receiving an Internet protocol source address of a client packet and determining a packet origination, a network connection point, and a network path of the client packet. The method further includes comparing the determined packet origination with at least one packet origination associated with the client, comparing the determined network connection point with at least one network connection point associated with the client, and assessing a compatibility between the determined network path and at least one of the determined packet origination or the determined network connection point. The method includes signaling execution of client authentication challenges when either of the two comparisons fails and/or the determined network path is incompatible with at least one of the determined packet origination or the determined network connection point.
Abstract:
Techniques are provided for seamless integration of wired and wireless functionality packet forwarding in network. A plurality of access switches are provided in each of a plurality of mobility sub-domains that are part of a mobility domain of a network. Each access switch serves one or more Internet Protocol (IP) subnets, each comprising a plurality of IP addresses. An access switch obtains an IP address for a wireless device according to the one or more IP subnets that the access switch serves. The access switch sends an association advertisement message to indicate the IP address of the wireless device and to enable other access switches and routers to compute a path to the wireless device. When a wireless device obtains an IP address, it can keep the same IP address as it roams in the mobility domain.
Abstract:
Techniques are provided to support roaming of wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam within and across mobility sub-domains. When a wireless device roams from one access switch to another access switch, a tunneling endpoint apparatus in the wireless device's home mobility sub-domain is configured to serve as the point of presence for the roamed wireless device. Traffic for the roamed wireless device is tunneled from the access switch where the wireless device has roamed (where it is currently attached) to the tunneling endpoint apparatus. When the wireless device roams across mobility sub-domains, then traffic is tunneled from the access switch where the wireless device is currently attached to the tunneling endpoint apparatus in that mobility sub-domain (called a “foreign” mobility sub-domain) to the tunneling endpoint apparatus in the wireless device's home mobility sub-domain.
Abstract:
A system and method for a hierarchical distributed control architecture to support roaming wireless client devices. Access switches serve one or more Internet Protocol (IP) subnets that include plural IP addresses. The access switches are arranged in switch peer groups and store information about other access switches in that switch peer group and about locations of wireless client devices that are associated with any access switch in the switch peer group. The access switches are further grouped into a corresponding mobility sub-domain each including plural switch peer groups. Plural controller devices control access switches in a corresponding mobility sub-domain. Each controller device stores information about the access switches and about locations of wireless client devices within its mobility sub-domain. A central controller device communicates with the controller devices for the respective mobility sub-domains. The central controller device stores information about locations of wireless client devices in the mobility sub-domains.
Abstract:
In one example embodiment, a system and method are shown that includes calculating a first SPF tree for a first device, the first SPF tree including a root node and a first child node, the first device being the root node of the first SPF tree. Additionally, the system and method may include calculating a second SPF tree for a second device that is a neighbor of the first device, the second SPF tree including a root node and a first child node, the second device being the root node of the second SPF tree. Further, the system and method may include building a set of interested nodes including the second device, if the first child node if the first SPF tree and the first child node of the second SPF tree are distinct.
Abstract:
Techniques are provided to facilitate monitoring of utility application traffic streams. At a network device that routes utility application traffic for utility devices, control information is received, where the control information is configured to cause the network device to monitor utility application traffic that passes through the network device. The network device monitors a header inserted into utility application traffic messages based on the control information.