摘要:
Disclosed is a method for dynamically identifying locations of a plurality of mobile nodes in a time division multiple access (TDMA) based ad hoc communication network, wherein one or more mobile nodes are being moved in and out of a predefined region. The method comprises allocating a hello slot in a dedicated channel of the TDMA based ad hoc communication network to each of the mobile nodes and announcing the allocation to the mobile nodes through hello slot allocation map, receiving location information from each of the mobile nodes during their hello slot and determining mobile nodes that are inside the predefined region based on the received location information, allocating a data slot to each determined mobile nodes inside the predefined region and announcing the allocation to the mobile nodes through data slot allocation map, and receiving updated location information from each determined mobile nodes during their data slot.
摘要:
In a network comprising a source, a destination, and intermediate nodes along a route between the source and the destination, techniques are provided for allocating one or more time slots to transmit a particular data stream along the route based on the QoS requirements to transmit the particular data stream. In one implementation, a Scout Request message (SRM) is sent from the source to the destination to allocate time slots along the route to transmit a particular data stream to the destination. The SRM can include QoS requirements to transmit the particular data stream. Each intermediate node along the route can allocate one or more time slots to transmit the particular data stream based on the QoS requirements needed to transmit the particular data stream along the route.
摘要:
In a network comprising a source, a destination, and intermediate nodes along a route between the source and the destination, techniques are provided for allocating one or more time slots to transmit a particular data stream along the route based on the QoS requirements to transmit the particular data stream. In one implementation, a Scout Request message (SRM) is sent from the source to the destination to allocate time slots along the route to transmit a particular data stream to the destination. The SRM can include QoS requirements to transmit the particular data stream. Each intermediate node along the route can allocate one or more time slots to transmit the particular data stream based on the QoS requirements needed to transmit the particular data stream along the route.
摘要:
A hybrid TDMA-CSMA MAC protocol is provided for allocating time slots within a frame having a structure in which transmission time is divided into a first number of actual TDMA time slots and a second number of “virtual” CSMA time slots. Each time a given node receives a Hello message, it can calculate variables based on an HSN field. A ratio of the first number to the second number can be dynamically adjusted depending upon the traffic conditions. When TDMA time slots within the frame are freed (e.g., no longer being used), slot position optimization techniques are provided for moving these freed TDMA time slots back into the CSMA portion of the frame and reallocating or moving other TDMA time slots into the portion of the frame that was previously occupied by the freed TDMA time slots to thereby maximize resource utilization.
摘要:
Disclosed is a method for dynamically identifying locations of a plurality of mobile nodes in a time division multiple access (TDMA) based ad hoc communication network, wherein one or more mobile nodes are being moved in and out of a predefined region. The method comprises allocating a hello slot in a dedicated channel of the TDMA based ad hoc communication network to each of the mobile nodes and announcing the allocation to the mobile nodes through hello slot allocation map, receiving location information from each of the mobile nodes during their hello slot and determining mobile nodes that are inside the predefined region based on the received location information, allocating a data slot to each determined mobile nodes inside the predefined region and announcing the allocation to the mobile nodes through data slot allocation map, and receiving updated location information from each determined mobile nodes during their data slot.
摘要:
In a network comprising a source, a destination, and intermediate nodes along a route between the source and the destination, techniques are provided for allocating one or more time slots to transmit a particular data stream along the route based on the QoS requirements to transmit the particular data stream. In one implementation, a Scout Request message (SRM) is sent from the source to the destination to allocate time slots along the route to transmit a particular data stream to the destination. The SRM can include QoS requirements to transmit the particular data stream. Each intermediate node along the route can allocate one or more time slots to transmit the particular data stream based on the QoS requirements needed to transmit the particular data stream along the route.
摘要:
When a source node (SN) seeks to transmit a first communication stream (FCS) to a destination node (DN), a method is provided for allowing the SN to preempt a lower priority communication stream (LPCS). User priorities are supported during slot scheduling based on stream-identifiers (IDs) and stream priority values exchanged by each of the nodes. A scout request message (SRM), which includes a stream ID and a user priority value of the SN, is transmitted to a next-hop node along a route towards the DN. A node along the route determines if free time slots are available along the route to meet QoS requirements of the FCS, and if not, the node determines whether there is a LPCS in the neighborhood, and if so, the node frees the particular time slots currently being used by the LPCS, and allocates the particular time slots for the FCS.
摘要:
A hybrid TDMA-CSMA MAC protocol is provided for allocating time slots within a frame having a structure in which transmission time is divided into a first number of actual TDMA time slots and a second number of “virtual” CSMA time slots. Each time a given node receives a Hello message, it can calculate variables based on an HSN field. A ratio of the first number to the second number can be dynamically adjusted depending upon the traffic conditions. When TDMA time slots within the frame are freed (e.g., no longer being used), slot position optimization techniques are provided for moving these freed TDMA time slots back into the CSMA portion of the frame and reallocating or moving other TDMA time slots into the portion of the frame that was previously occupied by the freed TDMA time slots to thereby maximize resource utilization.
摘要:
A hybrid TDMA-CSMA MAC protocol is provided for allocating time slots within a frame having a structure in which transmission time is divided into a first number of actual TDMA time slots and a second number of “virtual” CSMA time slots. Each of the nodes in a multi-hop network can transmit a Highest Slot Number (HSN) field. Each time one of the Hello messages is received from a neighbor node, a given node can calculate variables based on the HSN field. The given node can use these variables to calculate a ratio of the first number to the second number. This ratio can be dynamically adjusted depending upon the traffic conditions observed by nodes within the multi-hop ad hoc network at any particular time to thereby change the relative percentages of the frame which are allocated for a TDMA portion and a CSMA portion of the frame.
摘要:
When a source node (SN) seeks to transmit a first communication stream (FCS) to a destination node (DN), a method is provided for allowing the SN to preempt a lower priority communication stream (LPCS). User priorities are supported during slot scheduling based on stream-identifiers (IDs) and stream priority values exchanged by each of the nodes. A scout request message (SRM), which includes a stream ID and a user priority value of the SN, is transmitted to a next-hop node along a route towards the DN. A node along the route determines if free time slots are available along the route to meet QoS requirements of the FCS, and if not, the node determines whether there is a LPCS in the neighborhood, and if so, the node frees the particular time slots currently being used by the LPCS, and allocates the particular time slots for the FCS.