Abstract:
A method with which uranium from a natural uranium concentrate may be purified, including a) extracting the uranium present as uranyl nitrate in an aqueous phase A1 resulting from the dissolution of the natural uranium concentrate in nitric acid, by means of an organic phase which contains an extractant in an organic diluent; b) washing the organic phase obtained at the end of step a), with an aqueous phase A2; and c) stripping the uranyl nitrate of the organic phase obtained at the end of step b), by circulating this organic phase in an apparatus, as a counter current against an aqueous phase A3. The extractant is an N,N-dialkylamide and the ratio between the flow rate at which the organic phase obtained at the end of step b) and the aqueous phase A3 circulate in the apparatus where step c) occurs, is greater than 1.
Abstract:
The invention relates to a process which makes it possible to separate together all the actinide(III), (IV), (V) and (VI) entities present in a highly acidic aqueous phase from fission products, in particular lanthanides, also present in this phase by using a solvating extractant in a salting-out medium.Applications: reprocessing of irradiated nuclear fuels, in particular for recovering plutonium, neptunium, americium, curium and possibly uranium, present in the form of traces, in a pooled but selective fashion with regard to lanthanides, from a solution for the dissolution of an irradiated nuclear fuel, downstream of a cycle for the extraction of uranium.
Abstract:
The invention relates to a process for collectively separating all the actinides (III), (IV), (V) and (VI) present in a strongly acidic aqueous phase, from the fission products, and in particular from the lanthanides, which are also present in this phase, using two extractants that operate in unconnected chemical fields.Applications: reprocessing of irradiated nuclear fuels, especially to recover plutonium, neptunium, americium, curium and, possibly, uranium present in trace amounts, in a grouped manner but selectively with respect to the lanthanides, from a solution for dissolution of an irradiated nuclear fuel, downstream of a uranium extraction cycle.
Abstract:
A method of producing a customized orthodontic appliance (1), including brackets (12) fixed to teeth (13) of a dental arch of a patient and an orthodontic archwire (11). Each bracket (12) is fixed to a surface of a tooth (13) of the dental arch by a bracket bonding pad (121) of the bracket, and the orthodontic archwire (11) is fixed to the brackets in a housing (123) of a bracket body (122) of each bracket. The bracket is produced with a blank (50) having at least two volumes (51, 52), one volume representative of an envelope volume of a bracket bounding pad and an envelope volume of a bracket body.
Abstract:
A method with which uranium from a natural uranium concentrate may be purified, includinga) extracting the uranium present as uranyl nitrate in an aqueous phase A1 resulting from the dissolution of the natural uranium concentrate in nitric acid, by means of an organic phase which contains an extractant in an organic diluent;b) washing the organic phase obtained at the end of step a), with an aqueous phase A2; andc) stripping the uranyl nitrate of the organic phase obtained at the end of step b), by circulating this organic phase in an apparatus, as a counter current against an aqueous phase A3.The extractant is an N,N-dialkylamide and the ratio between the flow rate at which the organic phase obtained at the end of step b) and the aqueous phase A3 circulate in the apparatus where step c) occurs, is greater than 1.
Abstract:
A method using diglycolamide for increasing the separation factor between americium and curium and/or between lanthanides during an extraction operation. The operation comprising putting an acid aqueous phase, in which are found the americium, curium and/or lanthanides, in contact with an organic phase non-miscible with water, containing at least one extractant in an organic diluent. The aqueous and organic phases are then separated, and the diglycolamide is added to the aqueous phase. This method can be used for processing and recycling irradiated nuclear fuels, in particular for selectively recovering americium from high activity aqueous solutions such as raffinates stemming from the processing of irradiated nuclear fuels with a PUREX or COEX™ method; processing of rare earth ores of the monazite, xenotime or bastnaesite type, in order to facilitate separation of > rare earths from > rare earths and of yttrium, or that of two rare earths with adjacent or close atomic numbers.
Abstract:
A method for treating spent nuclear fuel, which includes first decontaminating the uranium, plutonium and neptunium found in a nitric aqueous phase resulting from dissolving the nuclear fuel in HNO3. The uranium, plutonium and neptunium found in the solvent phase is then split in a first aqueous phase and a second aqueous phase. Next, the first aqueous phase is stored. Following, the plutonium or other mixtures found in the first aqueous phase is purified relative to the fission products still found in said phase, in order to obtain, at the end of said purification, an aqueous solution containing a mixture of Pu and U or Pu, U and Np. Finally the resulting mixture of Pu and U or the mixture of Pu, U and Np is co-converted into a mixed oxide.
Abstract:
A method of producing a customized orthodontic appliance (1), including brackets (12) fixed to teeth (13) of a dental arch of a patient and an orthodontic archwire (11). Each bracket (12) is fixed to a surface of a tooth (13) of the dental arch by a bracket bonding pad (121) of the bracket, and the orthodontic archwire (11) is fixed to the brackets in a housing (123) of a bracket body (122) of each bracket. The bracket is produced with a blank (50) having at least two volumes (51, 52), one volume representative of an envelope volume of a bracket bounding pad and an envelope volume of a bracket body.
Abstract:
The invention relates to a process for reprocessing a spent nuclear fuel and for preparing a mixed uranium-plutonium oxide, which process comprises: a) the separation of the uranium and plutonium from the fission products, the americium and the curium that are present in an aqueous nitric solution resulting from the dissolution of the fuel in nitric acid, this step including at least one operation of coextracting the uranium and plutonium from said solution by a solvent phase; b) the partition of the coextracted uranium and plutonium to a first aqueous phase containing plutonium and uranium, and a second aqueous phase containing uranium but no plutonium; c) the purification of the plutonium and uranium that are present in the first aqueous phase; and d) a step of coconverting the plutonium and uranium to a mixed uranium/plutonium oxide. Applications: reprocessing of nuclear fuels based on uranium oxide or on mixed uranium-plutonium oxide.
Abstract:
The invention relates to a process for reprocessing a spent nuclear fuel and for preparing a mixed uranium-plutonium oxide, which process comprises: a) the separation of the uranium and plutonium from the fission products, the americium and the curium that are present in an aqueous nitric solution resulting from the dissolution of the fuel in nitric acid, this step including at least one operation of coextracting the uranium and plutonium from said solution by a solvent phase; b) the partition of the coextracted uranium and plutonium to a first aqueous phase containing plutonium and uranium, and a second aqueous phase containing uranium but no plutonium; c) the purification of the plutonium and uranium that are present in the first aqueous phase; and d) a step of coconverting the plutonium and uranium to a mixed uranium/plutonium oxide. Applications: reprocessing of nuclear fuels based on uranium oxide or on mixed uranium-plutonium oxide.