Abstract:
A satellite radiotelephone system includes a space-based component that is configured to receive wireless communications from radiotelephones over a range of satellite band return link frequencies and to transmit wireless communications to radiotelephones over a range of satellite band forward link frequencies. An ancillary terrestrial component is configured to receive wireless communications from radiotelephones over the range of satellite band return link frequencies, and to transmit wireless communications to radiotelephones over the range of satellite band forward link frequencies.
Abstract:
Methods of reducing interference in a satellite communications system may include receiving a plurality of feeder link signals and time aligning the plurality of feeder link signals to provide time aligned feeder link signals. At least two of the time aligned feeder link signals may be combined to provide reduced interference of at least one of the feeder link signals. Related systems are also discussed.
Abstract:
A processor for use in a satellite communications system includes a selector that is configured to select a subset of a plurality of spatially diverse satellite signals based upon a location of a radioterminal. The processor further includes a signal processor that is configured to detect a return-link transmission from the radioterminal responsive to the selected subset of the spatially diverse satellite signals. The respective spatially diverse satellite signals may include respective signals corresponding to respective antenna elements of a satellite. The selector and the signal processor may be ground based.
Abstract:
A terrestrial communications network may be configured to wirelessly communicate with a plurality of radiotelephones. The terrestrial communications network may include a plurality of base stations that are configured to wirelessly communicate with the plurality of radiotelephones. Moreover, the plurality of base stations may include at least one base station that is configured to transmit information to at least one radiotelephone using a circularly polarized antenna. Related methods are also discussed.
Abstract:
A mobile terminal includes a detector that is configured to detect that the mobile terminal is proximate to a device that is situated in a building, to establish communications between the mobile terminal and the device that is situated in the building and to terminate communications between the mobile terminal and a device that is situated external to the building. Related systems, devices and methods are disclosed.
Abstract:
Wireless communications transceivers include a transmitter that is configured to selectively frequency shift and transmit portions of broadband information over multiple non-contiguous narrowband frequency bands/segments, each of which is too narrow to carry the broadband information. A receiver also is configured to receive and selectively frequency shift portions of broadband information from multiple non-contiguous narrowband frequency bands/segments, each of which is too narrow to carry the second broadband information. Broadband information thereby may be transmitted and received in a regulated communications environment, even though a given provider may only be assigned discontinuous frequency bands/segments, none of which is wide enough to carry the entire broadband information.
Abstract:
A satellite radiotelephone frequency band can be reused terrestrially by an ancillary terrestrial network even within the same satellite cell, using interference reduction/cancellation techniques. An interference reducer is responsive to a space-based component and to an ancillary terrestrial network. The interference reducer is configured to reduce interference in wireless communications that are received by the space-based component from first radiotelephones in the satellite footprint over a satellite radiotelephone frequency band using wireless communications that are received by the ancillary terrestrial network from selected ones of second radiotelephones in the satellite footprint over the satellite radiotelephone frequency band and/or wireless communications that are transmitted by the ancillary terrestrial network to the second radiotelephones in the satellite footprint over the satellite radiotelephone frequency band. The interference reducer may include a prefilter that is configured to determine the selected ones of the second radiotelephones.
Abstract:
Two satellite communications systems can use the same frequency or frequencies in geographically overlapping footprints, without creating undue interference in a given system that is caused by the same frequency signal(s) that is/are used by the other system. In particular, an aggregate Effective Isotropic Radiated Power (EIRP) of the radioterminals and/or ancillary terrestrial components of a second satellite communications system in the common footprint is sufficiently low, and/or the receive antenna gain of a first satellite communications system is sufficiently low compared to the receive antenna gain of the second satellite communications system, so as to increase an aggregate receiver noise that is seen by the first satellite system receivers by an amount that does not substantially change a Quality of Service (QoS) of the first satellite communications system.
Abstract:
Radiation by an ancillary terrestrial network, and/or satellite radiotelephones that communicate therewith are monitored and controlled, to reduce and preferably prevent intra-system interference and/or interference with other satellite radiotelephone systems. In particular, a satellite radiotelephone system includes a space-based component that is configured to wirelessly communicate with first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band, and an ancillary terrestrial network that is configured to wirelessly communicate with second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band, to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band. Wireless radiation by the ancillary terrestrial network and/or the second radiotelephones at the space-based component is monitored, and the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones is adjusted in response to the monitoring. Intra-system interference and/or interference with other satellite systems thereby may be reduced or prevented.
Abstract:
A satellite radiotelephone system includes a space-based component, an ancillary terrestrial network, a monitor and a controller. The space-based component is configured to wirelessly communicate with radiotelephones in a satellite footprint over a satellite radiotelephone frequency band. The satellite footprint is divided into satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern. The ancillary terrestrial network is configured to wirelessly communicate with radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band, to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band. The monitor is configured to monitor wireless radiation at the space-based component that is produced by the ancillary terrestrial network and/or the radiotelephones in satellite cells that adjoin a satellite cell and/or in the satellite cell, in at least part of the subset of the satellite radiotelephone frequency band that is assigned to the satellite cell for space-based component communications. The controller is configured to adjust the radiation by the ancillary terrestrial network and/or the radiotelephones, in response to the monitor.