摘要:
Systems and methods which operate to identify interventional instruments and/or other objects in images are shown. Embodiments operate to extract relevant information regarding interventional instruments from a multi-dimensional volume for presenting the information to a user in near real-time with little or no user interaction. Objects may be identified by segmenting a multi-dimensional volume, identifying a putative object of interest in multiple multi-dimensional volume segments, and determining a position of the object of interest within the multi-dimensional volume using the putative object of interest segment identifications. Identification of objects of interest according to embodiments may be utilized to determine an image plane for use in displaying the objects within a generated image, to track the objects within the multi-dimensional volume, etc., such as for medical examination, interventional procedures, diagnosis treatment, and/or the like.
摘要:
A system for controlling the point spread function of an ultrasound signal transmitted into a patient. In accordance with one embodiment of the invention, only a selected number of the transducer elements transmit a transmit pulse. The elements which do not transmit the pulse are selected in accordance with an apodization probability density function. In accordance with another aspect of the present invention, each transducer element transmits a variable portion of a transmit pulse in order to control the acoustic power of the signal transmitted from each element.
摘要:
An ultrasonic transducer has a center row of transducers operating at a center row frequency and first and second outer rows of transducers operating at a common frequency or different frequencies lower than the center row frequency. In an enhancement of the ultrasonic transducer array, the center row of transducers has a matching layer with an acoustic velocity that is higher than matching layers that are associated with the first outer row and second outer row transducers. The matching layers can be selected such that the overall thickness of the transducer array is constant. A 1.5D ultrasonic transducer array operating at a higher center frequency and lower outer frequencies is adjustable to allow high resolution near field imaging in addition to better far field imaging without the need for a 2D transducer array.