Abstract:
A gas turbine engine combustion chamber comprises upstream and downstream ring structures and a plurality of circumferentially arranged combustion chamber segments. Each segment extends the full length of the combustion chamber and each segment is secured to the upstream ring structure and is mounted on the downstream ring structure. The upstream end of each combustion chamber segment comprises a surface having a plurality of circumferentially spaced radially extending holes and the upstream ring structure having a plurality of circumferentially spaced holes extending radially through a portion abutting the surface of the upstream end of each combustion chamber segment. Each combustion chamber segment being removably secured to the upstream ring structure by a plurality of fasteners locatable in the holes in the combustion chamber segment and corresponding holes in the upstream ring structure.
Abstract:
A combustion chamber including a first fuel injector and a second fuel injector, the first and second fuel injectors being arranged to inject fuel into a mainstream flow of air with the second fuel injector arranged downstream of the first fuel injector. A method of mixing fuel and air in a combustion chamber, including injecting fuel into a mainstream flow of air with a first fuel injector; injecting fuel into the mainstream flow of air with a second fuel injector, which is arranged downstream of the first fuel injector; injecting fuel into the mainstream flow with the first fuel injector such that the resulting mixture between the first and second fuel injectors has an equivalence ratio less than the lean flame stability limit; and injecting fuel into the mainstream flow with the second fuel injector such that a combustion zone is provided downstream of the second fuel injector.
Abstract:
A cooled gas turbine engine component comprises a wall which has a plurality of effusion cooling apertures extending there-through from a first surface to a second surface. Each aperture has an inlet in the first surface and an outlet in the second surface. Each aperture has a metering portion and a diffusing portion arranged in flow series and each metering portion is elongate and the width is greater than the length of the metering portion. The metering portion of each aperture has a U-shaped bend. The diffusing portion of each aperture is arranged at an angle to the second surface. Each outlet has a rectangular shape in the second surface of the wall. Each inlet has an elongate shape in the first surface of the wall and the inlet in the wall is arranged substantially diagonally with respect to the outlet in the wall.