Abstract:
An electroded high watt ceramic metal halide lamp assembly is provided which comprises a light transmissive arc-tube surrounding at least one electrode, a fill disposed in the arc-tube that includes at least one metal halide component and at least one metallic halide getter. The metallic halide getter has a Gibbs Free Energy greater than mercury halide and less than thallium halide, vapor pressure less than mercury halide, free energy of formation of oxide less than Aluminum oxide.
Abstract:
Tips for electrodes that are adapted to be applied to a ceramic halide lamp are formed by backwinding tungsten wire into a coil onto a tungsten shank. The outer diameter of the coil of tungsten wire is maintained sufficiently small so that the electrode tips can be inserted through openings in the legs of the electric arc tube of the ceramic halide lamp and the tungsten coil positioned within the hollow interior of the electric arc tube.
Abstract:
Discharge tubes for a lamp include a body portion with a first end, a second end, and a tubular member defining an interior area. The tubular member extends along an elongated axis between the first end and the second end. The discharge tube includes a first end portion provided at the first end of the body portion. The first end portion includes a first tapered portion that is tapered in a direction extending substantially perpendicular from the elongated axis. The first tapered portion includes an interior surface facing the interior area. The tapered portion spans between a maximum extent in the direction of the elongated axis and a minimum extent in the direction of the elongated axis.
Abstract:
A high-pressure discharge lamp is disclosed having a discharge vessel, an outer bulb enclosing said discharge vessel and defining an intervening space therebetween, a UV-enhancer positioned in the space between the outer bulb and the discharge vessel, the UV-enhancer provided with a wall fabricated of a ceramic material and an internal electrode, wherein an end portion of the UV-enhancer is closed with a compressive seal.
Abstract:
A metal halide high intensity discharge lamp having an arc tube assembly including a pair of discharge electrodes and a pair of starting electrodes. Each starting electrode is adjacent a respective discharge electrode. During starting, the lamp makes the glow discharge to arc discharge transition in a substantially shorter time than a lamp with a single starting electrode, and exhibits a substantially improved lumen maintenance.
Abstract:
A high-pressure discharge lamp having an internal metal shield for containing fragments in the event the lamp discharge vessel ruptures. The metal shield is mounted in an electrically isolated condition to avoid acceleration of sodium loss from the discharge vessel due to the proximity of the discharge vessel and the metal shield.
Abstract:
The luminous efficacy of a metal halide lamp containing sodium iodide and scandium iodide is increased, while color rendering index is maintained or improved by the addition of critical amounts of thallium iodide.