Abstract:
Embodiments of the present invention generally provide an input device comprising a display device integrated with a capacitive sensing device. The input device includes a plurality of transmitter electrodes, each transmitter electrode comprising one or more common electrodes configured to be driven for display updating and capacitive sensing, a plurality of near-field receiver electrodes configured to perform capacitive sensing in a near-field sensing region, and a plurality of far-field receiver electrodes configured to perform capacitive sensing in a far-field sensing region. The input device further includes a processing system coupled to the plurality of transmitter electrodes, the plurality of near-field receiver electrodes, and the plurality of far-field receiver electrodes. The processing system is configured to determine a near-field capacitive image based on the first resulting signals received from the near-field receiver electrodes and determine a far-field capacitive image based on the second resulting signals received from the far-field receiver electrodes.
Abstract:
Embodiments of the present invention generally provide a display line selection system. The display line selection system includes a first register element configured to select a first gate electrode to update a first display line during a first display update period and transfer charge to a second register element during the first display update period. The second register element is configured to select a second gate electrode to update a second display line during a second display update period. The display line selection system further includes a third register element configured to receive charge during a non-display update period and transfer charge to a fourth register element during the non-display update period. The fourth register element is configured to select a third gate electrode to update a third display line during a third display update period.
Abstract:
A processing system for a display device comprises a display driver configured to generate a gate select signal and output the gate select signal to gate select control circuitry to be driven on gate lines for display updating. The gate select signal comprises a transition from a first voltage to a second voltage, a transition from the second voltage to a third voltage, and a transition from the third voltage to the first voltage. The second voltage is greater than the first voltage and the second voltage is maintained for a first period. The third voltage is greater than the second voltage and the third voltage is maintained for a second period. The gate select signal is driven by the gate select control circuitry on gate lines of the display device to select one or more subpixels of the display device for display updating.
Abstract:
The semiconductor device is intended for connection with an in-cell type display touch panel having a plurality of common electrodes, a reference voltage for display is applied to the common electrodes in a display drive period, and the common electrodes serve as sensor electrodes in a touch detection period. The semiconductor device includes a DC level shift circuit operable to shift the DC level of a toggle signal output by a toggle drive circuit to the reference voltage. The semiconductor device supplies the reference voltage to the common electrodes of the display touch panel in the display drive period, and performs a guarding action in which at least a part of the plurality of common electrodes is supplied with a toggle signal shifted in DC level in the touch detection period.
Abstract:
Techniques for obtaining force-based data of an input device are provided. The techniques include driving sensor electrodes in transcapacitive mode and in absolute capacitive mode, obtaining profiles for each of the modes, scaling the transcapacitive profile, and subtracting the scaled transcapacitive profile from the profile for absolute capacitive sensing. The result of this subtraction is force-based data that indicates the degree of force with that input object applies to the input device. These techniques may be used with an input device in which a plurality of sensor electrodes are divided into two or more segments. Independent sets of force-based data can be obtained for each segment, which allows for determination of a location associated with each set of force-based data.
Abstract:
An example integrated display device and capacitive sensing device having an input surface includes a plurality of sensor electrodes, wherein each of the plurality of sensor electrodes comprises at least one common electrode configured for display updating and capacitive sensing. The device further includes at least one force receiver electrode, wherein the plurality of sensor electrodes are disposed between the input surface and the at least one force receiver electrode and wherein at least a portion of the plurality of sensor electrodes are configured to deflect toward the at least one force receiver electrode. The device further includes a processing system, coupled to the plurality of sensor electrodes, configured to drive at least a portion of the plurality of sensor electrodes with force sensing signals while receiving resulting signals from the at least one force receiver electrode, and determine force information for an input object based on the resulting signals.
Abstract:
Disclosed herein include an input device, processing system and methods for touch sensing. In one embodiment, an input device is provided that includes a plurality of sensing elements arranged in a sensor pattern and a plurality of conductive routing traces. Each conductive routing trace is conductively paired with a respective one of the plurality of sensing elements. The sensor routing traces are configured to reduce an RC load of the corresponding paired sensing elements compared to a base RC load of a plurality of base electrodes arranged in a base pattern that is identical to the sensor pattern. Each base sensor electrode is conductively paired with a base routing trace. The base sensor electrode and paired base routing trace have a size that is identical to a size of the paired sensing elements and conductive routing trace. The base routing trace terminates at the base sensor electrode to which the base routing trace is paired.
Abstract:
A processing system, input device, and method are provided for reducing interference in a capacitive sensing system. The processing system generally includes a sensor module configured to drive a first sensor electrode of a plurality of sensor electrodes with a first sensing signal during a first time period, wherein the first sensor electrode comprises a first display electrode of a display, the first display electrode configured for updating display pixels of the display and for capacitive sensing. The input device also includes a display driver configured to drive a first display line of display elements within the display with a display update signal during a second time period. The first time period at least partially overlaps with the second time period. Further, the first display line of display elements does not overlap the first sensor electrode.
Abstract:
Examples of the present disclosure generally provide a processing system for a display device including an integrated capacitive sensing device. The processing system includes a sensor module configured to be coupled to a plurality of sensor electrodes. Each sensor electrode includes at least one display electrode. The sensor module drives the plurality of sensor electrodes for capacitive sensing during a first period. The processing system further includes a display driver configured to drive display signals onto the display electrodes during a second period. The display signals are based on a reference voltage, and the first period and the second period are at least partially overlapping. The processing system further includes a power supply configured to provide the reference voltage to the display driver. The power supply includes a resonator circuit having an inductor connected in parallel with a capacitor and configured to modulate the reference voltage.
Abstract:
A method and apparatus for operating an input device having a touch sensor and associated display device is discussed. While performing touch sensing, inactive transmitter electrodes of the touch sensor are electrically floated, and one or more source lines from the display device are operated to achieve shielding against interference, such as that coming from a backlight underneath the touch sensor.