Abstract:
A display device includes a pixel unit including scan lines, data lines crossing the scan lines, and pixels connected to the scan lines and the data lines; a timing control unit configured to receive first data from an outside; a conversion unit configured to receive the first data from the timing control unit, to extract luminance components of the first data corresponding to the pixels to determine luminance distribution of the first data, to divide the luminance distribution into a plurality of luminance distribution ranges, and to convert the first data into second data by regulating an input gray level of the first data based on a conversion equation corresponding to a variation between data of the luminance distribution ranges; and a data drive unit configured to receive the second data from the conversion unit and to provide the second data to the data lines.
Abstract:
An organic light-emitting diode (OLED) display and a method of driving the display are disclosed. In one aspect, the method includes receiving input image data, calculating a load value corresponding to a driving amount of the input image data, and calculating a luminance adjustment value for each of the pixels based at least in part on the load value and a voltage drop proportional value of each of the pixels. The voltage drop proportional value corresponds to a ratio of a voltage drop value to a maximum voltage drop value. The method also includes generating output image data based at least in part on the input image data and the luminance adjustment value and displaying an image corresponding to the output image data.
Abstract:
An image processing apparatus and image processing method are disclosed. The image processing apparatus includes an image input unit receiving input image data to obtain grayscale values of a display image, a modeling unit calculating a luminance change ratio for each grayscale value according to a change of an on-pixel ratio and a final luminance reflected by the luminance change ratio, a grayscale re-mapping unit determining a compensation grayscale value for compensating a luminance change ratio according to the on-pixel ratio of the input image data to display a target luminance corresponding to a predetermined grayscale value included in grayscale information of the input image data in the on-pixel ratio condition of the input image data, and an image output unit outputting an output image data compensating the input image data by the compensation grayscale value.
Abstract:
An organic light emitting display device includes a plurality of pixels in a display area; a data driver configured to supply a data signal to the pixels; and a data converter configured to output a correction image data utilized in generation of the data signal, and the data converter is configured to generate a stress data corresponding to an input image data, to accumulate and store at least a portion of the stress data in a compressed state, and to generate the correction image data obtained by correcting the input image data according to the accumulated stress data.
Abstract:
A display device configured to reduce power consumption, in accordance with an exemplary embodiment of the present invention, includes a signal controller configured to calculate saturation data, luminance data, and power consumption data of input image data, to calculate a compensation ratio based on a rate of change of luminance, a rate of increase of saturation, or a power consumption, to generate compensation image data having a saturation of a red, green, or blue image of the input image data increased up to a threshold value so that the compensation ratio exceeds a reference value, and to send the generated compensation image data to a data driver, and the data driver configured to supply data voltages corresponding to the compensation image data, in response to gate signals sequentially generated from a gate driver to a display panel.
Abstract:
A display device including a data mapping unit configured to identify a minimum value of the three-color input data corresponding to red, green, and blue (RGB), to determine white output color data by multiplying the identified minimum value by a gain ratio, and to subtract the white output color data from each of the three-color input data to determine RGB output color data, a gain adjustment unit configured to determine a preliminary gain ratio to minimize standard deviations of each of the white and RGB output color data, and to change a preliminary gain ratio based on an accumulated sum of color data used for respective sub-pixels in a previously displayed image to determine the gain ratio, and a display unit including unit pixels, each including RGB and white sub-pixels, and configured to display an image which corresponds to the and RGB output color data.
Abstract:
An image processing apparatus and image processing method are disclosed. The image processing apparatus includes an image input unit receiving input image data to obtain grayscale values of a display image, a modeling unit calculating a luminance change ratio for each grayscale value according to a change of an on-pixel ratio and a final luminance reflected by the luminance change ratio, a grayscale re-mapping unit determining a compensation grayscale value for compensating a luminance change ratio according to the on-pixel ratio of the input image data to display a target luminance corresponding to a predetermined grayscale value included in grayscale information of the input image data in the on-pixel ratio condition of the input image data, and an image output unit outputting an output image data compensating the input image data by the compensation grayscale value.
Abstract:
A method of driving a display panel that includes first and second display-regions includes: determining maximum luminance data among first data including first red data, first green data, and first blue data for the first display-region, calculating a threshold gray-level based on a luminance gain, a gray-level of the maximum luminance data, and a gamma value for the display panel, selecting a smaller value between the threshold gray-level and a maximum gray-level as a gain determination gray-level, calculating a compensation gain obtained by dividing the gain determination gray-level by the gray-level of the maximum luminance data, generating first compensated data by applying the compensation gain to the first data, displaying a first-image in the first display-region based on the first compensated data, and displaying a second-image in the second display-region based on second data including second red data, second green data, and second blue data for the second display-region.
Abstract:
An image sticking controller includes a gamma conversion unit configured to gamma-convert gray scale values respectively corresponding to a plurality of pixels, and to output the gamma-converted gray scale values as gamma conversion values, a data accumulation unit configured to accumulate the gamma conversion values into an accumulation data, the accumulation data including a minimum accumulation value, a maximum difference value indicating a difference between the minimum accumulation value and a maximum accumulation value, and difference values indicating respective differences between the minimum accumulation value and an accumulation value of each of the pixels, an image sticking analysis unit configured to output an image sticking decrease control signal when the maximum difference value is greater than a reference value, and a data conversion unit configured to convert the gray scale values in response to the image sticking decrease control signal, such that image sticking is reduced.
Abstract:
An electronic device includes an organic light emitting diode (OLED) display device, and a display controller configured to provide image data to the OLED display device. The display controller calculates stress data for the OLED display device by accumulating the image data, and determines a compensation factor for the OLED display device based on the stress data. The OLED display device receives the image data and the compensation factor from the display controller, converts the image data into compensated image data based on the compensation factor, and displays an image based on the compensated image data.