Abstract:
An organic light-emitting diode includes a substrate, a first electrode on the substrate, a second electrode facing the first electrode, an emission layer between the first electrode and the second electrode, a hole transfer region between the first electrode and the emission layer, and an electron transfer region between the emission layer and the second electrode. The hole transfer region includes a first compound represented by Formula 1, and the emission layer includes a second compound represented by Formula 100.
Abstract:
A heterocyclic compound is represented by Formula 1. An organic light emitting device includes a first electrode, a second electrode and an organic layer between the first and second electrodes. The organic layer includes the heterocyclic compound. An organic light-emitting display apparatus includes the organic light-emitting device and a transistor including a source, a drain, a gate and an active layer. The source or the drain is electrically connected to the first electrode of the organic light-emitting device.
Abstract:
An organometallic compound and an organic light-emitting diode (OLED) including the organometallic compound are provided. In exemplary embodiments, the organometallic compound is a platinum complex comprising one or two heterocyclic ligands, the heterocyclic ligands being the same or different if they are two in number, each heterocyclic ligand comprising two nitrogen heterocyclic rings connected by a single bond, one of the rings being six membered and comprising at least one nitrogen and the other ring being a 1,2-diazole or a 1,2,4-triazole ring. One or two other organic ligands may be attached to the central platinum atom in the complex. OLEDs including one of the subject platinum compounds in a light emission layer exhibit lower driving voltages, higher luminances, higher efficiencies and longer lifetimes than do comparative OLEDs built with established dopants incorporated into the light emitting layers.