Abstract:
A sliding intermediate frequency (IF) receiver and a sliding IF reception method are provided. A first local oscillation signal and a second local oscillation signal may be generated, based on a division ratio of a frequency of the first local oscillation signal to a frequency of the second local oscillation signal that is determined in advance so that an amount of power to be consumed or an error rate of the sliding IF receiver is optimized. A received input signal may be converted to a first IF signal, based on the first local oscillation signal, and the first IF signal may be converted to a second IF signal, based on the second local oscillation signal.
Abstract:
A phase-locked loop (PLL) includes a counter configured to measure voltage-controlled oscillator (VCO) information of an oscillator during a mask time, and a frequency tuner configured to tune a frequency of the oscillator to a target frequency, based on a comparison result obtained by comparing the VCO information to target frequency information.
Abstract:
A reception apparatus having a dual reception structure includes a first receiver having a first quality (Q) factor and configured to receive a signal in a predetermined band in response to the first receiver being selected by a reception controller; a second receiver having a second Q factor greater than the first Q factor and configured to receive the signal in the predetermined band in response to the second receiver being selected by the reception controller; and a reception controller configured to select one of the first receiver and the second receiver based on interference information associated with an adjacent band adjacent to the predetermined band.
Abstract:
A super-regenerative receiver (SRR) circuit includes an amplifier configured to amplify an input injection signal and output the amplified injection signal to an oscillator; and a feed-forwarding unit configured to feed-forward, to the oscillator, a filtered signal obtained by filtering the injection signal after converting a frequency of the injection signal to another frequency; wherein the oscillator is configured to receive an input of a signal in which the filtered signal is applied to the injection signal.