Abstract:
A ballast for driving one or more lamps includes a controller and a current reduction circuit for accelerating a controller reset. Upon detecting a fault, the controller disables the ballast for a preset period of time, and resets. The controller additionally resets when the ratio of a supplied second value to a supplied first value falls below a threshold value. The current reduction circuit reduces the supplied second value in less than the preset period of time, such that the ratio falls below the threshold value and the controller resets. An emergency lighting system includes the ballast as a primary ballast, a backup ballast, and a primary power source. The controller detects a fault if the primary power source de-energizes and the backup ballast disconnects the one or more lamps from the primary ballast. The current reduction circuit accelerates the reset of the controller when the primary power source de-energizes.
Abstract:
A control circuit for use in a ballast configured for powering a first lamp set and a second lamp set. The second lamp set is operated via a controller and a second lamp driver circuit. The controller enables the second lamp driver circuit as a function of a monitored value corresponding to a current through a lamp of the second lamp set. The control circuit includes first and second input terminals for selectively connecting to the power supply. The control circuit reduces the monitored value as a function of a connection state of the first and second input terminals of the control circuit to the power supply. Thus, the control circuit causes the controller to selectively operate the second lamp driver circuit in order to energize the second lamp set in combination with the first lamp set.
Abstract:
A ballast comprises an inverter circuit for providing an oscillating current signal for energizing the at least one lamp. The inverter circuit comprises a first switching component and a second switching component each having a collector terminal, a base terminal, and an emitter terminal. And, each switching component is configured for alternately operating between a conductive state and a non-conductive state. A first collector-emitter circuit is connected between the collector terminal and the emitter terminal of the first switching component, wherein the first collector-emitter circuit has a first resistance of zero or more Ohms. A second collector-emitter circuit is connected between the collector terminal and the emitter terminal of the second switching component, wherein the second collector-emitter circuit has a second resistance of zero or more Ohms and the first resistance and the second resistance are unequal.
Abstract:
A ballast that selectively operates multiple lamps is provided. The ballast includes a switching network, capable of operating in a number of switching configurations. The ballast also includes a control circuit, and two lamp control switches. The control circuit is connected to the switching network, and provides respective control signals via respective output terminals as a function of the switching configuration of the switching network. Each lamp control switch is in parallel with its lamp and is connected to a respective output terminal. The first lamp control switch is connected to a ballast power supply, and either provides power to the first lamp or does not, depending on the first control signal. The second lamp control switch is connected to the first lamp control switch and to ground, and either provides power to the second lamp or does not, depending on the second control signal.
Abstract:
A ballast for energizing a lamp at a lighting level selected from a plurality of lamp lighting levels. The ballast includes a buck converter circuit configured to receive a DC voltage signal having a substantially constant magnitude. The buck converter circuit has a duty cycle for generating a lamp voltage output signal from the DC voltage signal. The lamp voltage output signal has a magnitude that is varied by the duty cycle to energize the lamp at the plurality of lamp lighting levels. A controller is configured to receive a dim input signal indicative of the selected lamp lighting level and to provide a control signal to the buck converter circuit as a function of the dim input signal. The control signal indicates a particular duty cycle corresponding to a lamp voltage output signal having a magnitude for energizing the lamp at the selected lamp lighting level.
Abstract:
A ballast to energize a lamp is provided. The ballast comprises a buck converter connected to an inverter via a switching component. The buck converter includes a transistor, a capacitor, a diode, and an inductor. The switching component has a predetermined breakover voltage value and is configured to provide a start up signal to the inverter when voltage at the switching component increases to the predetermined breakover voltage value. A control circuit is configured to monitor the voltage at the switching component while the voltage at the switching component increases to the predetermined breakover voltage, and is configured to generate a gate drive pulse at a gate terminal of the transistor when the voltage at the switching component reaches a predetermined voltage that is less than the breakover voltage of the switching component.
Abstract:
A two level lighting ballast is provided, which includes a self-oscillating inverter circuit and a control circuit. The inverter includes an input; an output to selectively provide current to energize a lamp; a switching circuit operating at a switching frequency; a feedback transformer; and an impedance component. The feedback transformer is connected to the output, and drives the switching circuit based on the lamp current. The impedance component is connected in parallel with the feedback transformer, and is operated by the control circuit. When the control circuit enables the impedance component, the switching circuit operates in a first frequency range, and a first lamp current is provided. When the control circuit disables the impedance component, the switching circuit operates in a second frequency range, and a second lamp current is provided. The first frequency range is lower than the second, and the first lamp current is greater than the second.
Abstract:
A restart circuit for causing an electronic ballast to perform a restart in response to reconnecting any lamp of a multiple lamp configuration of the electronic ballast to the electronic ballast is disclosed. The electronic ballast includes a filament health check circuit for providing a first current through a monitored filament of the lamps to a controller of the ballast. The controller restarts the electronic ballast when a determined ratio of the first current to a reference current indicates that the monitored filament has been disconnected or broken (i.e., the first current substantially decreases) and is subsequently replaced or reconnected to the ballast (i.e., the first current returns to a predetermined level). The ballast further comprises a dv/dt circuit for reducing the first current for a transient time period in response to reconnecting a filament other than the monitored filament to the ballast, causing the controller to restart the ballast.
Abstract:
A ballast for dimming a lamp is provided. The ballast includes an inverter circuit for providing a lamp current for energizing the lamp and a dim interface for receiving an input indicative of a selected lighting level. A control circuit is connected to the dim interface for generating a pulse-width-modulated signal having a duty cycle corresponding to the selected lighting level. A switching network is connected to the control circuit for receiving the pulse-width-modulated signal. The switching network operates between a conductive state and a non-conductive state as a function of the pulse-width-modulated signal. An impedance device is connected across the switching network and is configured for connecting in series with the lamp so that the impedance device receives the lamp current when the switching network is operating in the non-conductive state and the lamp current bypasses the capacitor when the switching network is operating in the conductive state.
Abstract:
A bi-level lamp ballast to selectively operate two lamps is provided. The ballast includes a control circuit having an input, connected to a switching network, and an output, which provides a particular control signal based on the state of the switching network. The ballast also includes respective lamp control switches, each having respective outputs. The first switch is connected to the output and a ballast power supply. In its first state, it connects the ballast power supply to its first output, and in its second state, it connects the ballast power supply to its second output. The second switch is connected to the output and a ground. In its first state, it connects the ground to its first output, and in its second state, it connects the ground to its second output. The state of each lamp control switch depends on the control signal generated by the control circuit.