Abstract:
In the operation of a magnetic resonance system, an RF excitation coil emits an excitation pulse such that nuclei in an examination subject are excited to emit of magnetic resonance signals. A number of local coils acquire the magnetic resonance signals emitted from the examination subject, with the magnetic resonance signals acquired by the local coils being coded in frequency space. An evaluation device accepts the magnetic resonance signals acquired by the local coils or accepts intermediate signals derived therefrom via one transmission channel per signal, and corrects the accepted signals using correction signals. The evaluation device uses the corrected signals reconstructing an image of the examination subject. The evaluation device determines the correction signals for all signals to be corrected using the same reference signal.
Abstract:
In a method for implementation of a magnetic resonance examination of a patient with an imaging medical magnetic resonance apparatus with a movable patient bed, for of an examination volume of the patient that is larger than an acquisition volume of the magnetic resonance apparatus, anatomical patient information and second technical information for setting the magnetic resonance apparatus are acquired dependent on the position of the patient bed from magnetic resonance signals acquired in a low-resolution calibration measurement (scan). A first group of measurement protocol parameters is generated from the patient information and a second group of measurement protocol parameters is generated from the technical information, to generate a measurement protocol for a subsequent high-resolution magnetic resonance examination.
Abstract:
Embodiments relate to evaluating properties of tissues with magnetic resonance imaging (MRI). A MR image is used to measure a characteristic that influences a particular chemical property of a tissue. In an exemplary embodiment, tissue transverse relaxation values or relaxation rates, which can readily be measured from MR images, are used to evaluate iron deposition in tissue. Iron deposition influences the tissue transverse relaxation values (T2 or T2*) or relaxation rates (R2=1/T2 or R2*=1/T2*). A clinically relevant R2CR* map is calculated based on the known values of the effective R2eff*, the water R2w*, and the fat R2f* by incorporating the most relevant value for each individual image element of a plurality of image elements of an MR image of the tissue. The clinically relevant R2CR* map provides an accurate evaluation of iron deposition in any region of the tissue with the use of one map.
Abstract:
In a method to select an undersampling scheme of k-space and an associated set of reconstruction kernels to acquire reduced magnetic resonance (MR) data sets with multiple coils, a calibration data set is acquired for each of the respective coils, a noise covariance is determined from autocorrelations and correlations of the noise of the various coils. At least one set of reconstruction kernels is calculated for each of the multiple undersampling schemes from the calibration data sets of the various coils. For each set of reconstruction kernels, a characteristic value is calculated from the noise covariance and the respective reconstruction kernels of the coils, with the characteristic value being proportional to a spatial mean value of a signal noise of an MR image. A selected undersampling scheme and a selected set of reconstruction kernels are selected based on the calculated characteristic values.
Abstract:
In a method and a magnetic resonance system to show an object that is introduced into an examination region, the object having a known chemical shift relative to tissue that is predominant in the examination region, magnetic resonance signals are acquired from the examination region of the subject with the introduced object therein, and the different chemical shift of the introduced object and of the predominant tissue is computationally used in a processor to calculate, from the acquired magnetic resonance signals, a localization image in which substantially only the introduced object is shown.
Abstract:
In a method as well as a magnetic resonance tomography apparatus for implementation of such a method for improved sensitivity-encoded magnetic resonance imaging using a two-dimensional or three-dimensional acquisition coil array, two-dimensional or three-dimensional undersampling of k-space is undertaken by measurement of a number N of basic partial trajectories τn in k-space that in their entirety form a geometric arrangement of source points, a number M of different operators Cm(Δ km) are determined, with each operator representing an algebraic transformation with which unmeasured target points at an interval Δ km from one of the measured source points are synthesized from a number of measured source points, the operators Cm(Δ km) are applied to at least one subset of the measured source points for at least partial completion of the magnetic resonance data set, and a largely artifact-free image is reconstructed in three-dimensional space on the basis of the measured source points and the synthesized data points.
Abstract:
In a method and apparatus for generating a magnetic resonance image of a contiguous region of a human body on the basis of partial parallel acquisition (PPA) by excitation of nuclear spins and measurement of radio-frequency signals indicating the excited spins, the spin excitation is implemented in steps with measurement of an RF response signal simultaneously in each of a number of N component coils. A number of response signals thus are acquired that, for each component coil, form an incomplete data set (40) of acquired RF signals. Additional acquired calibration data points exist for each incomplete data set. The N incomplete data sets are acquired to a subset of M reduced, incomplete data sets on the basis of an N×M reduction matrix, so that M reduced, incomplete data sets are obtained, M complete data sets are formed on the basis of an N×M reconstruction matrix with the non-measured lines of the M reduced, incomplete data sets being reconstructed from all N incomplete data sets. A spatial transformation of the completed reduced data sets is then implemented in order to form a complete image data set from each completed, reduced data set.
Abstract:
In a method and apparatus for magnetic resonance imaging based on a partially parallel acquisition (PPA) reconstruction technique, a number of partial k-space data sets are acquired with a number of component coils, the totality of the partial data sets forming a complete k-space data set, the respective coil sensitivity of each component coil is determined based on at least one part of the complete k-space data set, any partial k-space data set is transformed via a PPA reconstruction technique dependent on the determined coil sensitivities, and the transformed partial data sets are superimposed to obtain a low-artifact image data set.
Abstract:
In a method and apparatus to determine a magnetic resonance image of an examination subject with at least two spin species by using a chemical shift imaging multi-echo MR measurement sequence, first approximated MR image is determined based on a first approximative model and of a second approximated MR image is determined based on a second approximative model, wherein the first and second approximative model respectively express an MR signal under consideration of one or more MR parameters, and wherein the first and second approximative model differ with regard to the consideration of at least one MR parameter. The MR image is determined from a mean calculation that depends on the first and second approximated MR image.
Abstract:
In a magnetic resonance method and apparatus for time-resolved acquisition of magnetic resonance data in an examination region of a magnetic resonance imaging scanner, an object being examined is placed on a table and is continuously moved through the examination region, magnetic resonance signals are acquired from the examination region while the object being examined is continuously moved with the table through the examination region and prior to the acquisition of magnetic resonance signals, a phase coding that corresponds to a position in k-space, for the purpose of sampling k-space, is carried out. An interruption of the movement of the table takes place at a predetermined table position, and the acquisition of magnetic resonance signals from an examination region is continued over the course of a predetermined time period, while the table (13) is at rest in the predetermined position. At least while the table is at rest, the phase coding takes place such that acquisitions are made in alteration of a predetermined number of magnetic resonance signals for filling a first region of k-space with magnetic resonance data and a predetermined number of magnetic resonance signals for filling a second region of k-space with magnetic resonance data.