Abstract:
A thermal assisted magnetic recording head has a magnetic head slider having an air bearing surface that is opposite to a magnetic recording medium, a core that can propagate laser light as propagating light, a plasmon generator that includes a generator front end surface facing the air bearing surface, and a main pole facing the air bearing surface, and a laser light generator that supplies the laser light to the core. The plasmon generator generates near-field light (NF light) at the generator front end surface to heat the magnetic recording medium. The main pole includes a main pole end surface that faces the air bearing surface and that is positioned in the vicinity of the generator front end surface, and emits a magnetic flux to the magnetic recording medium from the main pole end surface. At least a portion of the laser light that is not coupled with the plasmon generator thermally deforms the air bearing surface so that a part of the air bearing surface positioned closer to the leading side than the generator front end surface and the main pole end surface in the down track direction protrudes toward the magnetic recording medium.
Abstract:
A thermally assisted magnetic recording head has a generator end surface facing an air bearing surface (ABS), and includes: a near-field light (NF light) generator that generates an NF light on the generator end surface and irradiates a magnetic recording medium with the NF light, and a main magnetic pole end surface positioned in the vicinity of the generator end surface; a main magnetic pole that emits a magnetic flux from the main magnetic pole end surface to the magnetic recording medium and a shield end surface positioned in the vicinity of the generator end surface; and a return shield that is magnetically linked to the main magnetic pole, and that absorbs the magnetic flux returning from the magnetic recording medium at the shield end surface. The main magnetic pole and the return shield are positioned to be on the same side with respect to the NF light generator in the down track direction, and the NF light generator does not overlap with the main magnetic pole either in the down track direction or in the cross track direction.