Abstract:
A proximity radar method for a rotary-wing aircraft includes a sequence of phases T(k) of steps. In a first phase T(1), the electronic computer of the radar system computes unambiguous synthetic patterns on the basis of a first activated interferometric pattern M(1) of N unitary radiating groups. In the following phases T(k) of steps, executed successively in increasing order of k, the electronic computer computes synthetic patterns on the basis of interferometric patterns M(k) of rank k, wherein the N unitary radiating groups of a series deviate simultaneously in terms of azimuth and in terms of elevation as k increases, and establishes maps of rank k of the surroundings in terms of azimuth distance/direction and/or elevation distance/direction cells wherein the detected obstacle ambiguities, associated with the network lobes, are removed by virtue of the map(s) provided in the preceding phase or phases.
Abstract:
This method involves, for an array of at least two antennas pointing in different directions and the respective radiation patterns of which overlap one another, each antenna including at least two radiating elements so as to be able to work in a first operating mode associated with a first radiation pattern (Δ) and according to a second operating mode associated with a second radiation pattern (Σ): acquiring, for each antenna, a first signal (SΔi) corresponding to the first operating mode and a second signal (SΣi) corresponding to the second operating mode; determining, for each antenna, an opening half-angle (ρi) of a cone of possible directions of incidence from the amplitude of the first and second signals; calculating the bearing angle (Θ0) and/or the elevation angle (φ0) of the direction of incidence by intersection of the cones of possible directions of incidence determined for each antenna.
Abstract:
An active and passive detection device is provided with a low probability of interception having a fixed antenna structure, transmission means and reception means. The antenna structure is formed by a plurality of radiating elements grouped into identical subnetworks and comprises at least one transmission subnetwork and at least three reception subnetworks. The transmission means are capable of generating an unfocused continuous waveform having low peak power in one plane and of transmitting said waveform. The reception means are capable of detecting the targets following the formation of a plurality of directional beams on the basis of the signals received on the reception subnetworks. The reception means are likewise capable of implementing the interception of radar signals from other radar sources using cross correlation processing between the signals received on at least three reception subnetworks.