摘要:
A fuel cell module includes a cell unit including an electrolyte membrane, a cathode disposed on one face of the electrolyte membrane, and an anode disposed on the other face of the electrolyte membrane, and a water reservoir which stores water produced at the cathode. The water reservoir includes an opening formed in a region other than the cathode of the cell unit, and a projection projecting from the opening to an anode side. The water covering a cathode surface of a fuel cell is reduced.
摘要:
A fuel cell device is provided that may remove water that has been generated on the surface of a cathode. When the display member of a mobile phone is opened, a shutter member slides from a protection position to an open position. A water absorbing block is thereby moved toward a protrusion portion while contacting the surface of a cathode of a fuel cell, absorbing and removing water that has accumulated on the surface of the cathode. The water absorbing block is moved along the surface of the cathode by simply opening and closing the mobile phone in this manner, and the water that has been generated on the surface of the cathode may be absorbed and removed.
摘要:
A hydrogen-absorbing alloy electrode utilizes as an electrode material a hydrogen-absorbing alloy having selectively oriented crystals, which is expressed in terms of a specific maximum value obtained from analysis of powder X-ray diffractometry. This electrode, in which the hydrogen-absorbing alloy used is hardly pulverized upon repeated charge-discharge cycles and oxidation thereof is suppressed, gives metal hydride alkaline secondary batteries having excellent cycle characteristics. A method for evaluating hydogen-absorbing alloys for electrode comprises, utilizing the fact that there exists a clear relationship between specific parameters obtained by analyzing data based on the hydrogen-absorbing alloy to be evaluated and the characteristics of the electrode obtained therefrom, preparing and using analytical curves with the specific parameters. This method can evaluate rapidly and precisely various characteristics of hydrogen-absorbing alloys for electrode, without actually fabricating test cells therefrom.
摘要:
A controller capable of realizing continuous click feelings within an operation range of the controller and a specific click feeling at a specific position of the operation range with continuous natural maneuvering feeling. When a first member to which an element shaft of an electronic device is fixed is rotated relatively to a second member to which an element body of the electronic device is fixed to rotate the shaft, the controller adjusts the control amount the element. A notch array, formed of a serration and a first pawl, and a position confirmation means, formed of a notch and a pawl, are disposed between the first member and the second member. Both members are disposed oppositely with respect to the shaft. A center click feeling, different from the feeling in the notch array, can be obtained at the center within the range of the notch array.
摘要:
The hydrogen-absorbing alloy electrode for alkaline storage batteries according to the invention comprises a hydrogen absorbing alloy powder prepared by grinding a strip of hydrogen absorbing alloy produced by solidifying a molten alloy by a roll method and satisfying the following relations:r/t.ltoreq.0.5 (1)60.ltoreq.t.ltoreq.180 (2)30.ltoreq.r.ltoreq.90 (3)wherein r represents the mean particle size (.mu.m) of the hydrogen absorbing alloy powder and t represents the mean thickness (.mu.m) of the strip absorbing alloy. The hydrogen absorbing alloy electrode of this invention features an improved high-rate discharge characteristic at low temperature.
摘要翻译:根据本发明的碱性蓄电池的吸氢合金电极包括通过研磨通过辊法固化熔融合金而制备的吸氢合金条而制备的吸氢合金粉末,并且满足以下关系:r / t < = 0.5(1)60 = t 180(2)30 r = 90(3)其中r表示吸氢合金粉末的平均粒径(μm),t表示 条状吸收合金的平均厚度(μm)。 本发明的吸氢合金电极在低温下具有改善的高倍率放电特性。
摘要:
Three types of novel hydrogen-absorbing alloy electrodes A, B and C usable for metal hydride secondary batteries are provided. All three types are represented by the general formula AB.sub.x wherein A represents Ti or elements that principally comprise Ti and generate heat upon absorption of hydrogen, B represents Mo and Ni or elements that principally comprise Mo and Ni and absorb heat upon absorption of hydrogen and 0.5.ltoreq.X.ltoreq.2, and are readily producible and difficult to undergo cycle deterioration and need only short activation treatment time. (A) uses a hydrogen-absorbing alloy obtained by quenching and solidifying an alloy melt under an atmosphere of a reducing gas containing hydrogen at a cooling rate of at least 1.times.10.sup.3 .degree. C./sec and having on the surface thereof a hydride layer; (B) uses a hydrogen-absorbing alloy having a composite phase structure comprising a main phase and a subphase, the average areal ratio of said subphase to said main phase in any cross-section of said alloy being 5 to 20%; and (C) uses a hydrogen-absorbing alloy having a composite structure comprising a main phase and subphase, said main phase comprising crystallites having a major axis length (a) of 0.8 to 6 .mu.m and a ratio of the major axis length (a) to minor axis ratio (b), a/b, of not more than 3.