Abstract:
A method for determining hydrogen content in a compound is disclosed. This method generally comprises heating the sample to sufficient temperatures to effect pyrolytic conversion of any hydrogen containing compounds in the sample to hydrogen gas, and measuring the hydrogen content evolved by this conversion. In a preferred embodiment, this is carried out in a tube furnace inerted and purged with a noble gas. An apparatus for determining hydrogen content in a compound is also disclosed.
Abstract:
A high temperature fluid-to-fluid heat exchanger is described wherein heat is transferred from a higher temperature fluid flow core region to a lower temperature fluid flow annulus. The wall separating the high and low temperature fluid flow regions is comprised of a material having high thermal absorptivity, conductivity and emissivity to provide a high rate of heat transfer between the two regions. A porous ceramic foam material occupies a substantial portion of the annular lower temperature fluid flow region, and is positioned to receive radiated heat from the wall. The porosity of the ceramic foam material is sufficient to permit a predetermined relatively unrestricted flow rate of fluid through the lower temperature fluid flow region.
Abstract:
A process for preparing a feed gas, for a thermolytic detoxification reactor or other processing units, utilizing an autoclave is described. A container of liquid waste is placed in an inerted and atmospherically sealed enclosure and hot gaseous effluent from the reactor is introduced to the interior of the enclosure outside the container to heat the liquid waste. The hot gaseous effluent is recirculated from the enclosure to the interior of the container to mix with the gaseous contents thereof. Gas is conducted from the interior of the container to the reactor as feed gas. The autoclave can also be fed by a pumped liquid waste stream.
Abstract:
A thermal decomposition reactor accepts solid, liquid or gaseous waste products of industrial processes or the like and rapidly reduces same to substances such as carbon dioxide, water and glassified non-leachable ash without limitation by materials that may be commonly included in such waste.
Abstract:
A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.