Abstract:
A wall assembly for use in a combustor of a gas turbine engine includes a transverse structure with at least one effusion passage that extends at an angle α therethrough. The effusion passage includes an inlet in an outer periphery of a wall. A wall assembly within a gas turbine engine include a liner panel generally parallel to a support shell and a transverse structure with at least one effusion passage that extends at an angle α therethrough. The effusion passage includes an inlet in an outer periphery of a wall that is transverse to the liner panel and the support shell.
Abstract:
An assembly for a turbine engine includes a combustor wall. The combustor wall includes a shell, a heat shield and an annular land. The heat shield is attached to the shell. The land extends vertically between the shell and the heat shield. The land extends laterally between a land outer surface and an inner surface, which at least partially defines a quench aperture in the combustor wall. A lateral distance between the land outer surface and the inner surface varies around the quench aperture.
Abstract:
A combustor for a turbine engine is provided that includes a combustor wall. The combustor wall includes a shell and heat shield, which is attached to the shell. One or more cooling cavities are defined between the shell and the heat shield, and fluidly couple a plurality of apertures defined in the shell with a plurality of apertures defined in the heat shield. The apertures in the heat shield include a first aperture and a second aperture. An angle of incidence between the first aperture and a surface of the heat shield is different than an angle of incidence between the second aperture and the surface.
Abstract:
A wall panel assembly includes a first liner panel and a coating. The first liner panel has an inner first liner panel surface and a first liner panel outer surface each axially extending between a first liner panel first end and a first liner panel second end. The coating is disposed on at least one of the first liner panel inner surface and the first liner panel outer surface. The coating has an overall thickness that varies axially between the first liner panel first end and the first liner panel second end.
Abstract:
A combustor of a gas turbine engine includes a multiple of liner panels mounted to the support shell, at least one of the multiple of liner panels includes a first impingement cavity that operates at a first pressure and a second impingement cavity that operates at a second pressure different than the first pressure. A method of cooling a wall assembly within a combustor of a gas turbine engine includes directing air through a support shell and a liner panel that defines a first impingement cavity and a second impingement cavity. The first impingement cavity operates at a first pressure and the second impingement cavity operates at a second pressure that is different than the first pressure.
Abstract:
A liner panel is provided for use in a combustor of a gas turbine engine. The liner panel includes a major dilution passage having a lip and a first seal boss. The liner panel also includes a minor dilution passage having a second seal boss adjacent the first seal boss.
Abstract:
Aspects of the disclosure are directed to a cooling design feature for inclusion in a liner of an aircraft, comprising: a plurality of angled holes, and at least one through hole separating all combinations of any two of the angled holes, wherein the at least one through hole is oriented at an angle that is substantially perpendicular to a surface of the liner, and wherein each of the plurality of angled holes are non-parallel to the at least one through hole.
Abstract:
Aspects of the disclosure are directed to a liner associated with an engine of an aircraft. The liner includes a panel and an array of projections configured to enhance a cooling of the panel and distributed on at least part of a first side of the panel that corresponds to a cold side of the panel.