Abstract:
A system and method for reordering tones of a DMT signal within a communication system is described. Cross tone correlated noise in a received signal is identified and rearranged such that tones with correlated noise are spread out throughout the received signal before being processed by a decoder such as, Viterbi decoder. In an embodiment, two tones with the most correlated noise are placed at each end of the sequence of tones presented to the Viterbi decoder. In some embodiment, the tones with correlated noise can be spread such that two adjacent tones with correlated noise have a minimum distance of at least three tones between them at the input to the Viterbi decoder. In other embodiment, tones in the received signal can be processed in various kinds of interleavers for reordering according to the interleaver scheme.
Abstract:
A method of providing an improved transfer function for a Discrete Multitone (DMT) type modulation transmitter with digital filtering after modulation followed by digital to analog converter and analog filtering is provided by sending a test signal to said transmitter and measuring the results of the test signal to determine the transfer function. The inverse of the transfer function that needs to be compensated is determined and the inverse of transfer function to be compensated is truncated to the region of interest (H2). The desired band split component of pre-compensation filter is designed (H3). The desired target frequency response of the pre-compensation filter is determined by H4=H2*H3 where H4 is the multiplication of H2 and H3 Given the target frequency response in H4 Hermetian symmetry is imposed on the frequency response. The inverse Fourier transform (IFFT) is taken to generate a time domain filter, h5. The characteristic of this filter is added at the digital filtering after modulation.
Abstract:
An integrated circuit 18 is provided that includes a memory 32 and a memory modification component 33. The memory 32 maintains a bits count, a gain, and a tone order for each of a plurality of discrete multi-tone sub-channels. The memory modification component 33 operable to control an in-service modification of at least some of the bits count, the gain, and the tone order using a single bits, gains and tone order table.