Abstract:
The present invention relates to a sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in cutting operations requiring high toughness. This has been achieved by combining a carbonitride based hard phase of specific chemical composition with an extremely solution hardened Co-based binder phase.
Abstract:
A method of making a PcBN cutting tool insert is provided. The composite body may be a PcBN cutting tool insert. The method includes mixing raw material powders consisting of cBN and one or more of hBN, TiC, TiN, Ti(C,N), WC, W, C, Co, Co2Al9, Al AlN, Al2O3 with a liquid (e.g., ethanol) and an agent (e.g., polyethylene glycol, PEG) to form a homogeneous slurry with the desired composition; forming spherical powder agglomerates, typically 100 &mgr;m in diameter, preferably by spray drying; filling the PcBN powder into recesses, pockets, grooves, etc., of a cemented carbide or cermet substrate; presintering the compacted body to remove the agent; and causing the PcBN powder to be sintered together and simultaneously bonded to the substrate inside a container under HP/HT-conditions to form a composite body.
Abstract:
The present invention relates to a method for obtaining a sintered body of carbonitride alloy with titanium as main component which does not have a binder phase layer on the surface after sintering. This is obtained by performing the liquid phase sintering step of the process at 1-80 mbar of CO gas in the sintering atmosphere.
Abstract:
The present invention relates to a cutting tool insert of a carbonitride alloy with titanium as the main component and containing tungsten and cobalt useful for machining, e.g., turning, milling and drilling of metal and alloys. The insert is provided with a coating of at least one wear resistant layer. The composition of the insert and the coating is chosen in such a way that a crack-free coating in a moderate (up to 1000 MPa) compressive residual stress state is obtained. The absence of cooling cracks in the coating, in combination with the moderate compressive stress, gives the tool insert improved properties compared to prior art tools in many cutting tool applications.