Abstract:
A method and system are disclosed for permitting high concurrency of access during backup copying of designated data stored within a storage subsystem which includes multiple storage devices coupled to the data processing system via a storage subsystem control unit having subsystem memory therein. Data within each storage device is accessed utilizing a Unique Control Block (UCB), which identifies a selected storage device, and an associated data retrieval command sequence which identifies the data to be accessed. Portions of the data copied to subsystem memory within the subsystem storage control unit as sidefiles from a first storage device may be accessed utilizing a Unique Control Block (UCB) associated with an alternate storage device by associating a selected data retrieval command sequence therewith which identifies the data as stored within the subsystem memory. In this manner, data from a first storage device may be accessed utilizing an alternate Unique Control Block (UCB), permitting concurrent access of data utilizing the Unique Control Block (UCB) associated with the first storage device.
Abstract:
A delta query technique transmits only latest changes to data of objects from a server to one or more clients in response to a client query (request) to access the object data. A global counter is maintained for all of the objects served by the server. Every time the data of an object changes, a value of the global counter increments (updates) and the updated global counter value is then assumed (“inherited”) by that object. In addition, the global counter is updated when a client issues a request to access one or more objects. If the data of the objects has changed since the last time the client accessed the objects, the server responds with the latest object data and the updated global counter value. Notably, each client maintains a local counter having a value that, upon receipt of the latest object data, is modified to reflect the updated global counter value.
Abstract:
A write ordering style asynchronous replication service utilizes a loosely-accurate global clock in a data backup and recovery storage environment. The storage environment includes a set of source storage systems illustratively embodied as source replication nodes that cooperate to maintain a consistency group that may span multiple geographical sites. The storage environment also includes one or more target storage systems illustratively embodied as target replication nodes configured to service the consistency group. The write ordering style service utilizes the loosely-accurate global clock to provide consistent replication of a storage space of the consistency group.
Abstract:
A data backup and recovery system for use with at least one server interconnected with at least one storage device, including at least one data recovery device, at least one associated data recovery storage device, controlled by the data recovery device, and at least one data communication monitor. A method for data backup and recovery is also disclosed.
Abstract:
A target data storage system comprises a peer-to-peer communication link interface for linking the target to a source data storage system, and data storage for storing point in time copy data received from the source via the peer-to-peer communication link interface. Information is established at the target relating logical identification of the point in time copy data to point in time copy data stored at the target and to point in time copy data stored at the source, such that the information references the data storage system having requested point in time copy data. A controller of the target accesses requested point in time copy data at the target if the table indicates that the requested point in time copy data is available at the target; else obtains the requested point in time copy data from the source via the peer-to-peer communication link interface.
Abstract:
A method for data backup includes creating a sidefile in a cache memory of a data storage system. Entries are added to the sidefile specifying copy operations to be respectively performed by copy services in the system, including at least first and second copy services of different, first and second types. The copy operations specified by the operations are then executed using the first and second copy services.
Abstract:
A backup method for a computer database system comprising maintaining a mirrored copy of the database at a remote location is characterized in that updates to the remote database data are delayed for a delay time greater than or equal to the upper limit on the data communication delay between the local location and the remote location and updates to a remote log for the database are executed after corresponding updates to a local log without said delay. In this way a consistent copy of the database may be recovered from the mirrored copy of the database and the remote log after destruction of the database system.
Abstract:
A data backup copying session on a data processing system is secured responsive to initiation of the data backup session by an application executing on a processing unit by generating a unique identifier for the data backup session. Thereafter, all member paths of a group of paths designated by the processing unit for communication between itself and the first storage subsystem are identified and associated with the data backup session. Access to the session is thereafter allowed only along a member path of the group of paths associated with the data backup session. The system and method of the invention further provide for fault recovery and protection against excessive demand on storage control unit memory.
Abstract:
A method and system for efficiently accessing desired datasets among multiple datasets which are stored at specific data addresses within multiple storage subsystems which are coupled to a host system via a storage subsystem controller and a data channel. A data request is transmitted from the host system to the storage subsystems via the data channel. The data request specifies non-address attributes for desired datasets, such as boundary addresses for large data extents including many datasets or a request for all datasets modified since the occurrence of a specified event. The data request is then processed at the storage subsystem controller to determine a data address for each dataset within the storage subsystem which possess the desired attributes. Thereafter, the desired datasets are transmitted via the data channel to the host system in association with a specific address for each dataset. A selected status message is transmitted from the storage subsystem controller when no more datasets are located which possess the desired attributes. In this manner, the retrieval of data from a storage subsystem is greatly enhanced.