Abstract:
A monitoring method and apparatus for a component-based software system operating over one or more processing devices are provided according to the invention. The method includes the steps of initiating an invocation of a second software component from within an execution of a first software component. A stub start log data is recorded in an instrumented stub before the invocation of the second software component. A stub end log data is recorded in the instrumented stub after a response is received from the invocation of the second software component. The stub start log data and the stub end log data gather runtime information about execution of the second software component within the component-based software system. The monitoring is capable of gathering log data across a plurality of threads, across a plurality of processes, and across a plurality of processors. The log data may be retrieved and analyzed to produce timing latency information, shared resource usage information, application semantics information, and causality relationship information.
Abstract:
A method for selecting a route by a node between a source node and a destination node in a wireless mesh network by establishing the route between the source node and the destination node using media access control addresses is described. A method for a node to selecting a route to join a multicast group in a wireless mesh network using media access control addresses, is also described.
Abstract:
A computer method and related apparatus for delivering content files to a client computer are disclosed wherein a request for a content file on a content server is received from a client; a future time period during which the content file will be available on a cache server is determined; and a rewritten uniform resource locator comprising time period availability information, or a link to a file comprising the time period availability information, is returned from the server to the client. The client can use the information to obtain the content file in the determined future time period.
Abstract:
The invention supports two types of handoffs. The first handoff is for an inter-AN cell selection where the source AN allows the AT to add a cell under the control of a different AN to its active set and then allows the AT to switch to the target AN. A bearer path is established between the source and target AN to transfer the packet data traffic using an exchange of messages to register the AT's movement from one BTS to another BTS. The A8/A10 connections remain anchored at the source AN and, hence, a bearer path is needed between the source and target AN to transfer the packet data traffic. The second handoff occurs when the source AN specifies a move of the AT to a new AN proactively. New connections are established at the target AN to support the AT, and the AT is subsequently moved to the target AN via the relevant air-interface messaging.
Abstract:
The invention relates to a method for changing the development pattern, increasing the growth and starch accumulation, changing the structure of starch and increasing the resistance to water stress in plants. The method involves culturing plants in an atmosphere containing volatile elements emitted by a microorganism, without there being any physical contact between the microorganism and the plant. The method is based on the discovery that the volatile elements emitted by Gram-positive or Gram-negative bacteria, yeasts and microscopic fungi stimulate an increase in the growth of plants in general, with an increase in the height, the number of leaves and/or the number of branches of the plant, as well as an increase in the accumulated starch and structural change of this biopolymer, and modification of the development pattern, with an increase in floral buds. An increased resistance to water stress can also be observed, in addition to an increase in starch in leaves separated from whole plants.
Abstract:
A system and method for determining an initial mean open loop power level of a pilot channel of a reverse traffic channel for a mobile terminal. The initial open loop power level enables handoff of an active call from a first access network to a second access network. A handoff initialization request is from the first access network. A mean received power level of the forward link of the second access network is measured and transmitted to the second access network. An open loop power adjustment factor is received from the second access network. The initial mean open loop power level is set based on the open loop power adjustment factor.
Abstract:
A system and method for radio link failure recovery is presented. A set of component carriers is identified. Each one of the set of component carriers includes a control channel monitored by a user equipment (UE). The control channel signals data channel assignment information for the UE. Radio link failure recovery is performed using monitoring of only a subset of the set of component carriers. In some cases, performing radio link failure recovery includes performing radio link failure detection, and detecting radio link failure by detecting an out-of-sync condition on a downlink physical layer, the out-of-sync condition occurring for a predetermined duration. In some cases, a number of component carriers in the subset of the set of component carriers is equal to 1.
Abstract:
A method, system and device are provided for avoiding in-device coexistence interference between different radio technologies deployed in adjacent bands on the same device by reporting uplink buffer status information to the radio network and configuring LTE and non-LTE components to provide an in-device coexistence operation mode where non-LTE components use radio resources during the non-LTE on-intervals and during off-intervals inserted into the LTE on-intervals in response to predetermined trigger events.
Abstract:
Methods, devices, and systems for multi-carrier network operation are disclosed. In one embodiment, a method of performing channel scrambling in a multi-carrier network, wherein the multi-carrier network includes a first component carrier (“CC”) and a second CC between a base station and a user equipment (“UE”) comprises receiving a Cell Radio Network Temporary Identifier (“C-RNTI”) and a cell identification (“ID”) for at least one of the first CC and the second CC; and using the RNTI and the cell ID to perform scrambling of information transmitted on at least one of the first CC and the second CC.
Abstract:
It provides a method for multicast group management. The apparatus determines a request for joining a multicast service derived during establishment of a connection for carrying multicast service between a first device and a second device, and it sends a message indicative of joining said multicast service based on the request for joining if the multicast service is not available in said network device. As a consequence, it reduces the messages exchanged in unreliable wireless connection so as to reduce the probability of service interruption.