Abstract:
A secondary radar uses monopulse reception techniques to improve the estimate of the aircraft position and to improve the reliability of the reply decoding process. Digital signal processing techniques are utilized to replace the analog circuit used in the prior implementations. The secondary radar implements monopulse processing using a half angle phase method wherein the sum and difference signals are encoded in a complete phasor. The detection of the signal and extraction of the azimuth angle data is implemented using a digital receiver concept. The complex phasor is sampled at an intermediate frequency, down converted to baseband and detected. The azimuth angle is computed using arithmetic methods implemented by digital signal processing circuitry.
Abstract:
A rudder control system having adjustable rudder drive turn off and “turn on,” and component wear monitoring. The rudder drive “turn off” being adjusted in accordance with the rudder stop position relative to the rudder order stop position, thereby improving position accuracy. Frequency of system “turn on” is compared to an acceptable “turn on” frequency for solenoid operation. Should the “turn on” frequency exceed the acceptable “turn on” frequency, the rudder angle at which “turn on” is implemented is adjusted to protect solenoids in the system from burnout. The rate of change of the rudder repeatback signal is monitored. A slow rate of change providing an indication of some component problem.
Abstract:
A digital automatic level control system employs delay elements, which enable information about a signal parameter from the past, present and future to be processed to provide an optimal gain that can be used to level rapidly varying signals, such as bursty signals. As digital time samples of a signal are passed through first and second buffers, first and second accumulators maintain running sums that are related to the sum of the samples presently in the first and second buffers, respectively. The sums in the first and second accumulators represent information about the signal parameter for the future and the past, respectively. By choosing the maximum of these two values, the system can anticipate the beginning of a signal burst, and still have enough delay to compensate the end of a signal burst. In one embodiment of the invention, multiple channel signals can be leveled, either individually or in groups.
Abstract:
A proof mass is suspended in a cavity in a housing. The proof mass moves along a sensing axis in response to linear acceleration. Elastic support members are connected between the proof mass and the housing and are arranged to exert a reaction force on the proof mass in response to displacement of the proof mass along the sensing axis. An optical fiber is connected between the proof mass and opposite sidewall portions of the housing such that displacement of the proof mass along the sensing axis elongates a first portion of the optical fiber and shortens another portion. An optical signal source provides a broadband optical signal input to the optical fiber. A fiber optic Bragg grating is formed in the optical fiber and arranged to reflect a portion of the optical signal. Acceleration of the proof mass modulates the wavelength of the reflected optical signal.
Abstract:
In accordance with the present invention, there is provided an aerodynamic control system which is attachable to an aircraft body and is operable between enhanced control and radar evasive modes. The aerodynamic control system is provided with an aerodynamic support structure which extends from the aircraft body. The support structure is rotatably attached to the aircraft body about a support structure rotational axis. The support structure has an outboard support and an inboard support which is disposed adjacent the aircraft body. The aerodynamic control system is further provided with an elongate torque member which extends from the aircraft body. The torque member has a torque rotational axis which is co-linear with the support structure rotational axis. The torque member further has an outboard end which is fixedly attached to the outboard support of the support structure. In the normal fight mode the inboard and outboard supports cooperatively rotate in response to rotation of the torque member. In the radar evasive mode the outboard support rotates relative to the inboard support in response to rotation of the torque member, thereby altering the aerodynamic characteristics of the aerodynamic control system for aircraft control.