Abstract:
An object image detection device is disclosed that is able to rapidly detect an object image from an input image without a great deal of computation. The object image detection device includes an object image classification unit for determining whether the object images are included in an image having a given orientation, an image orientation detection unit for detecting orientation of the input image, an image rotation unit for rotating the object image classification unit according to the detected orientation of the input image, and a detection unit for detecting the object images from the input image by using the rotated object image classification unit.
Abstract:
An object image detection device is disclosed that is able to rapidly detect an object image from an input image. The object image detection device includes an image block generation unit to generate plural image blocks from the input image for detecting the object images, an image classification unit to determine whether each of the image blocks includes one or more of the object images by using one or more features of the object images, and acquire the image blocks including the object images to be object image candidates; and a detection unit to sequentially detect the object images from the object image candidates. The image classification unit acquires the object image candidates based on a relative positional relationship between the image blocks and already-acquired object image candidates.
Abstract:
A heat dissipating assembly (1) includes a plurality of fins (10), three heat pipes (20), and a base (30). Each fin defines three through holes (11) across a middle portion thereof. A plurality of dome-shaped protruding portions (14) is formed in each fin. The protruding portions are arranged in a regular array of offset rows. Adjacent protruding portions in any row protrude from front and rear faces of the fin in a regular alternating configuration. One end of each heat pipe is respectively inserted into the corresponding through holes of the fins, and an opposite end of each heat pipe is attached in the base. The base is attached on an electronic device, for absorbing heat produced by the electronic device. The protruding portions increase a heat dissipating surface area of the fins, and deflect airflow that passes across the fins in a direction parallel to the fins.