Abstract:
Process for preparing high-concentration gaseous formaldehyde having a molar CH2O:H2O ratio of ≧0.6 from an aqueous formaldehyde solution by evaporation of at least part of the solution, in which the aqueous formaldehyde solution is heated to a vaporization temperature T and the gas phase formed is taken off, wherein the evaporation temperature T obeys the relationship: T[° C.]≧T′min[° C.] where T′min(c)=A+B×(c/100)+C×(c/100)2+D×(c/100)3 and A=+68.759, B=+124.77, C=−12.851, D=−10.095, where c is the instantaneous CH2O content of the aqueous formaldehyde solution during the evaporation in percent by weight and is from 20 to 99% by weight.
Abstract:
A process for preparing a high-concentration formaldehyde solution by removing water from a lower-concentration formaldehyde solution having a formaldehyde content of from 5 to 50% by weight, in which the lower-concentration formaldehyde solution is fed to a preheater and heated in the preheater, depressurized via a pressure maintenance device and concentrated in a helical tube evaporator to give a vapor stream and the high-concentration formaldehyde solution as bottom stream, wherein the heated lower-concentration formaldehyde hyde solution is depressurized in the pressure maintenance device to give a two-phase mixture which is fed into the helical tube evaporator, is proposed.
Abstract:
Processes are disclosed comprising: (a) reacting an aqueous formaldehyde solution in a reactor in the presence of a suitable catalyst to obtain a reaction product mixture comprising trioxane, formaldehyde and water; (b) distilling the reaction product mixture to form a top stream comprising crude trioxane; and (c) treating the top stream in one or more additional stages to form pure trioxane; wherein an aqueous sidestream is drawn off during the distilling of the reaction mixture.
Abstract:
Process for preparing high-concentration gaseous formaldehyde having a molar CH2O:H2O ratio of ≧0.6 from an aqueous formaldehyde solution by evaporation of at least part of the solution, in which the aqueous formaldehyde solution is heated to a vaporization temperature T and the gas phase formed is taken off, wherein the evaporation temperature T obeys the relationship: T[° C.]≧T′min[° C.] where T′min(c)=A+B×(c/100)+C×(c/100)2+D×(c/100)3 and A=+68.759, B=+124.77, C=−12.851, D=−10.095, where c is the instantaneous CH2O content of the aqueous formaldehyde solution during the evaporation in percent by weight and is from 20 to 99% by weight.