Abstract:
A method and system are described for generating a geologic model having material properties for a faulted subsurface region. The method and system involve parameterizing corresponding fault surfaces and solving an energy optimization equation and/or conservation law equation for the corresponding fault surfaces based on parameterized nodes on the fault surfaces to generate a displacement map. The displacement map is used to map a geologic model from the physical space to the design space, where it is populated with material properties. The resulting populated geologic model may be used for hydrocarbon operations associated with the subsurface region.
Abstract:
Method for constructing a continuous design space for generating a physical property model in a faulted subsurface medium. The matching relationship of the fault traces on the two sides of each fault is used in a systematic way to determine the location of the fault traces in the design space. The location of any other point in the design space may then be determined by interpolation of the locations of fault traces. The fault traces are thus used as control points for the mapping. The method involves: (a) identifying the control points and determining their location in both physical and design space and (b) using selected control points, mapping any point from physical space to design space, preferably using the moving least squares method.
Abstract:
A method is presented for modeling reservoir properties. The method includes constructing a coarse computational mesh for the reservoir. The coarse computational mesh comprises a plurality of cells. The method further includes determining a plurality of flows for each of the plurality of cells based on Dirichlet boundary conditions. Additionally, the method includes determining a solution to a coarse pressure equation for the reservoir based on the plurality of flows.
Abstract:
Method for constructing a geologic model of a subsurface region. A concept region and a geologic concept is selected (300). A design region is created corresponding to the concept region (310). A conceptual model is generated compatible to data in the design legion (320). The conceptual model is mapped from the design legion concept region (330). The conceptual interfaces and region properties may be adjusted to match data in the concept region (340).
Abstract:
There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model that has a plurality of coarse grid cells. A plurality of fine grid models is generated, wherein each fine grid model corresponds to one of the plurality of coarse grid cells that surround a flux interface. The method also includes simulating the plurality of fine grid models using a training simulation to obtain a set of training parameters, including a potential at each coarse grid cell surrounding the flux interface and a flux across the flux interface. A machine learning algorithm is used to generate a constitutive relationship that provides a solution to fluid flow through the flux interface. The method also includes simulating the hydrocarbon reservoir using the constitutive relationship and generating a data representation of a physical hydrocarbon reservoir in a non-transitory, computer-readable medium based on the results of the simulation.
Abstract:
A method is presented for modeling reservoir properties. The method includes an auxiliary time-stepping procedure of the reservoir between an old time and a new time, and calculating a plurality of masses explicitly. A plurality of phase component densities is updated linearly from the plurality of masses. A plurality of saturation changes is calculated based on the plurality of masses. A plurality of phase flow rates is updated based on the plurality of saturation changes, a plurality of phase flow rates at the old time, and a plurality of saturation derivatives of the phase flow rates at the old time. A plurality of component flow rates may be calculated based on the updated plurality of phase component densities and the plurality of phase flow rates. The method also includes a formulation method based on the auxiliary time stepping procedure.
Abstract:
A heat-exchange device comprises a first heat exchanger defining an upper end and a lower end. A second heat exchanger defines an upper end connected to the upper end of the first heat exchanger and a lower end spaced apart from the lower end of the first heat exchanger in a substantially longitudinal direction such that a predetermined angle between the first heat exchanger and second heat exchanger is between about 0 and 180°. A wind-guide member is disposed between the first heat exchanger and second heat exchanger for guiding wind toward the first heat exchanger and second heat exchanger.
Abstract:
The disclosure provides a method for dynamically loading a relocatable file, comprising: analyzing the relocatable file; searching for a relocation section according to the information obtained through the analysis; obtaining a relocation target address after the relocation section is found and calculating an address to be relocated and a skipping distance; determining whether the skipping distance exceeds a range of a short skipping, and if the skipping distance does not exceed the range of the short skipping, then writing the relocation target address into the address to be relocated to perform relocation loading; if the skipping distance exceeds the range of the short skipping, then adding a veneer code segment and making the skipping whose distance exceeds the range of the short skipping indirectly skip to the relocation target address to perform relocation loading. Accordingly, the disclosure provides a device for dynamically loading a relocatable file, comprising: an analyzing module, a calculating module, a searching module, a determining module, and a relocation dynamic loading module. With the solution, dynamically loading a relocatable file can be realized when the calling distance of a function exceeds the range of the short skipping.