Abstract:
A polarizer adapted to improve contrast and visibility of a display device, a method of manufacturing the polarizer, and a flat panel display device including the polarizer. In one embodiment, the polarizer includes a base and a plurality of grids disposed in a stripe pattern on the base. Here, the grids are separated from each other and formed of metal-containing graphite.
Abstract:
An organic light-emitting device including a transparent conducting oxide layer as a cathode and a method of manufacturing the organic light-emitting device. The organic light-emitting device includes an anode disposed on a substrate. An organic functional layer including at least an organic light-emitting layer is disposed on the anode. The transparent conducting oxide layer used as the cathode is disposed on the organic functional layer. The transparent conducting oxide layer cathode is formed by plasma-assisted thermal evaporation. A microcavity structure is not formed in the organic light-emitting device, thereby avoiding a luminance change and a color shift as a function of viewing angle.
Abstract:
A wideband retardation layer (or film) that can perform circular polarizing so that the retardation layer can be formed with an organic light-emitting device to be relatively thin and have a relatively high contrast with no reduction in brightness, and an organic light-emitting device including the retardation layer. The retardation film includes a base and a retardation layer including an alkali oxide layer grown to be inclined on a surface of the base, wherein the alkali oxide layer is disposed by slant-angle depositing alkali oxide on the surface of the base.
Abstract:
A wideband retardation layer (or film) that can perform circular polarizing so that the retardation layer can be formed with an organic light-emitting device to be relatively thin and have a relatively high contrast with no reduction in brightness, and an organic light-emitting device including the retardation layer. The retardation film includes a base and a retardation layer including an alkali oxide layer grown to be inclined on a surface of the base, wherein the alkali oxide layer is disposed by slant-angle depositing alkali oxide on the surface of the base.
Abstract:
Provided is a method of manufacturing an organic light-emitting device, the method including: forming an anode; forming an intermediate layer including an emission layer on the anode; and forming a cathode on the intermediate layer, wherein the forming the cathode includes: thermally depositing indium oxide with plasma generated in a chamber; and surface-treating with plasma an indium oxide layer formed by the thermal depositing of the indium oxide.
Abstract:
In one aspect, a cathode including the first metal layer, the transparent conductive layer formed on the first metal layer, and the second metal layer formed on the transparent conductive layer is applied to the organic light emitting device and thicknesses of the first metal layer, the transparent conductive layer, and the second metal layer are controlled so that the external light reflection of the organic light emitting device is prevented. The cathode may further include the third metal layer formed on the second metal layer.
Abstract:
An organic light emitting display includes an anode; an organic layer on the anode; and a cathode on the organic layer. The cathode includes a first region and a second region which are sequentially disposed on the organic layer in parallel. The first and second regions are formed by doping a metal oxide on an indium oxide matrix. The doping density of the metal oxide of the first region is greater than that of the second region, the metal oxide of the first region has a density gradient, and the density of the metal oxide in a boundary surface of the first and second regions is the same. An organic light emitting display according to the present invention can increase light emitting efficiency without using a resonance structure.
Abstract:
An organic light emitting diode device including a first electrode; a second electrode facing the first electrode; and an emitting layer interposed between the first electrode and the second electrode, wherein the first electrode includes an ytterbium (Yb) alloy represented by the following Chemical Formula 1: Yb-M (1), and in Chemical Formula 1, M is a metal including at least one of silver (Ag), calcium (Ca), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), molybdenum (Mo), ruthenium (Ru), indium (In), and tungsten (W).
Abstract:
An organic light emitting diode (OLED) device and a method of manufacturing the same, the OLED device including a substrate, a first electrode on the substrate, a buffer layer on the first electrode, an emission layer on the buffer layer, and a second electrode on the emission layer, wherein the buffer layer includes a transparent conductive oxide, and a metal or metal oxide having a work function lower than a work function of the transparent conductive oxide.
Abstract:
Provided is an organic light emitting device including an anode, a cathode, and a light emitting layer disposed between the anode and the cathode, wherein the cathode has a structure including a first metal layer and a second metal layer, or a structure including a first metal layer, a second metal layer, and one selected from the group consisting of an oxide layer, a nitride layer, and a nitric oxide layer, and wherein the cathode has low resistance.