Abstract:
A cleaning apparatus including: a normally-charged toner cleaning member that receives a voltage having a polarity reverse to a normal charging polarity of a toner and electostatically removes a toner having the normal charging polarity on a cleaning target; a reversely-charged toner cleaning member that receives a voltage having the same polarity as the normal charging polarity of a toner and electrostatically removes a toner having a polarity reverse to the normal charging polarity on the cleaning target; and a pre-cleaning member that is disposed at an upstream side of the normally-charged toner cleaning member and the reverse-charged toner cleaning member in a surface moving direction of the cleaning target, receives a voltage having a polarity reverse to the normal charging polarity of the toner, and electrostatically removes a toner having the normal charging polarity on the cleaning target, is provided.
Abstract:
A cleaning device for cleaning a surface moving member such as an image carrier of an image forming apparatus, and a process cartridge having the cleaning device. The cleaning device has a cleaning member that is brought into uniform abutment against the surface moving member in a longitudinal direction of the surface moving member. A high removing performance can be obtained while preventing the abrasion of the surface moving member and the cleaning blade, and the state of abutment between the surface moving member and the cleaning blade is securely maintained over time.
Abstract:
A lubricant supplier, installable in a process cartridge or an image forming apparatus, includes a ridge line extending crosswise to a longitudinal axis of the image forming member and contacting the surface of the image forming member at a non-perpendicular angle to the longitudinal axis of the image forming member, a first face opposed to the image forming member and located upstream from a contact portion of the ridge line and the surface of the image forming member in a direction of movement of the surface of the image forming member, and a second face opposed to the image forming member and located downstream from the contact portion in the direction of movement of the surface of the image forming member. The first face and the second face intersect at the ridge line and form an obtuse angle therebetween.
Abstract:
A lubricant supplying device including a molded lubricant having a Martens hardness of approximately 40 N/mm2 to approximately 70 N/mm2 measured with a test force of 50 mN and a load-applying period of 30 seconds, a rotative member including a fibrous brush of a thickness of approximately 5 deniers to approximately 15 deniers in a circumference of a rotative supporting axis of the rotative member with a density of approximately 20,000 fibers to approximately 100,000 fibers per square inch, and configured to apply lubricant shavings of the molded lubricant to an image bearing member held in contact with a cleaning member and remove the lubricant shavings remaining on the surface of the image bearing member, and a pressing member configured to press contact the molded lubricant with the rotative member at a pressure force ranging from approximately 2 N/m to approximately 12 N/m.
Abstract translation:一种润滑剂供给装置,其包括用50mN的试验力测量的Martens硬度为约40N / mm 2至约70N / mm 2的模制润滑剂, 负载施加周期为30秒,旋转构件包括厚度约5旦至约15旦尼尔的纤维刷,旋转构件的旋转支撑轴的周长密度为约20,000根纤维至约100,000根纤维 并且构造成将润滑剂润滑剂润滑剂施加到与清洁部件保持接触的图像承载部件上,并除去残留在图像承载部件的表面上的润滑剂刮屑;以及加压部件, 在约2N / m至约12N / m的压力下具有旋转构件的润滑剂。
Abstract:
An image forming apparatus includes a plurality of image bearers, an intermediate transferor, a plurality of primary transferors, a primary transfer power source, a primary transfer current detector, and processing circuitry. The primary transferors primarily transfer toner images of colors from the image bearers onto the intermediate transferor. The intermediate transferor secondarily transfers the toner images onto a transfer medium. The primary transfer power source applies voltage to the primary transferors. The primary transfer current detector detects a current flowing through the primary transferors when a specified voltage is applied to the primary transferors and is connected to only one primary transferor of one color among all the colors. The processing circuitry determines a primary transfer voltage based on a current value detected by the primary transfer current detector and determines a primary transfer voltage value of the primary transferors of all the colors based on the detected current value.
Abstract:
A belt device includes a belt wound around a plurality of rollers, one of the plurality of rollers, and a belt contact member disposed on the one of the plurality of rollers. The belt rotates along with the plurality of rollers. The belt contact member faces an edge of the belt in an axial direction of the one of the plurality of rollers and includes a flat portion and a separation portion. The flat portion forms a plane perpendicular to the axial direction of the one of the plurality of rollers. The separation portion is disposed outboard of the flat portion in a radial direction of the one of the plurality of rollers and has a surface located farther from the edge of the belt than the flat portion in the axial direction of the one of the plurality of rollers.
Abstract:
A belt control device includes a plurality of rollers, a belt wound around the plurality of rollers and configured to rotate along with the plurality of rollers, a belt contact member that the belt contacts when the belt moves in an axial direction of the plurality of rollers, and a shaft displacement member movable in the axial direction and including an inclined face inclined with respect to a surface of the belt to control movement of the belt in the axial direction. The belt, the belt contact member, and the shaft displacement member are configured to make a frictional force between an edge of the belt and the belt contact member greater than a frictional force between the belt contact member and the shaft displacement member.
Abstract:
A belt control device includes a holder to movably support a rotation shaft of at least one of the plurality of rotators around which a belt is looped, a contact part to contact an end of the belt as the belt moves in a belt width direction, a stationary frame part disposed facing the holder, a shaft moving device to move the rotation shaft as the belt moves, and at least one projection disposed on one of the stationary frame part and the holder. The projection is to contact the other of the stationary frame part and the holder. The projection includes a long projection having a contact portion extending in a shaft moving direction in which the rotation shaft moves, and the contact portion is contactable with the other of the stationary frame part and the holder.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a slidable member, and a rotation restrictor. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The slidable member is slidably disposed around the roller shaft to move along the roller shaft as the belt moves laterally outward in the axial direction. The rotation restrictor is disposed adjacent to the slidable member to restrict rotation of the slidable member around the roller shaft.
Abstract:
An image forming apparatus includes a toner image forming device to form a toner image on a rotatable toner image bearer, a looped belt to carry a recording medium, a support roller to rotate the belt, a pressing member to press the belt against the toner image bearer, a transfer electric field generator to form an electric field to transfer the toner image onto the recording medium, and a contact member to contact an end surface of the belt as the belt moves to one side in a belt width direction. The belt includes a first portion pressed against the toner image bearer by the pressing member and a second portion adjoining the first portion. A relative position of the support roller relative to the toner image bearer and the pressing member is determined such that the second portion of the belt contacts the toner image bearer.