-
公开(公告)号:US09578279B1
公开(公告)日:2017-02-21
申请号:US14974800
申请日:2015-12-18
Applicant: Amazon Technologies, Inc.
Inventor: Rohith Mysore Vijaya Kumar , Ambrish Tyagi , Yadunandana Nagaraja Rao , Suresh Bholabhai Lakhani , Amit Kumar Agrawal
CPC classification number: G06K9/00664 , G06K9/00711 , G06K9/00751 , G06K9/4642 , G11B27/031 , H04N5/77 , H04N21/23418 , H04N21/2743 , H04N21/4223 , H04N21/84 , H04N21/8456 , H04N21/8549
Abstract: A system and method for generating preview data from video data and using the preview data to select portions of the video data or determine an order with which to upload the video data. The system may sample video data to generate sampled video data and may identify portions of the sampled video data having complexity metrics exceeding a threshold. The system may upload a first portion of the video data corresponding to the identified portions while omitting a second portion of the video data. The system may determine an order with which to upload portions of the video data based on a complexity of the video data. Therefore, portions of the video data that may require additional processing after being uploaded may be prioritized and uploaded first. As a result, a latency between the video data being uploaded and a video summarization being received is reduced.
Abstract translation: 一种用于从视频数据生成预览数据并使用预览数据来选择视频数据的部分或者确定用于上传视频数据的顺序的系统和方法。 系统可以采样视频数据以产生采样的视频数据,并且可以识别具有超过阈值的复杂度度量的采样视频数据的部分。 该系统可以在省略视频数据的第二部分的同时上传与所识别的部分相对应的视频数据的第一部分。 系统可以基于视频数据的复杂度来确定用于上传视频数据的部分的顺序。 因此,上传后可能需要额外处理的视频数据的部分可以被优先排列并首先上传。 因此,正在上传的视频数据和正在接收的视频摘要之间的延迟被减少。
-
公开(公告)号:US09298974B1
公开(公告)日:2016-03-29
申请号:US14307493
申请日:2014-06-18
Applicant: Amazon Technologies, Inc.
Inventor: Cheng-Hao Kuo , Jim Oommen Thomas , Tianyang Ma , Stephen Vincent Mangiat , Sisil Sanjeev Mehta , Ambrish Tyagi , Amit Kumar Agrawal , Kah Kuen Fu , Sharadh Ramaswamy
CPC classification number: H04N13/239 , G06K9/00261 , G06K9/00288 , G06K9/03 , H04N13/271 , H04N2013/0081 , H04N2013/0092
Abstract: Various embodiments enable a primary user to be identified and tracked using stereo association and multiple tracking algorithms. For example, a face detection algorithm can be run on each image captured by a respective camera independently. Stereo association can be performed to match faces between cameras. If the faces are matched and a primary user is determined, a face pair is created and used as the first data point in memory for initializing object tracking. Further, features of a user's face can be extracted and the change in position of these features between images can determine what tracking method will be used for that particular frame.
Abstract translation: 各种实施例使得能够使用立体声关联和多个跟踪算法来识别和跟踪主要用户。 例如,可以独立地通过各个相机拍摄的每个图像上运行面部检测算法。 可以执行立体声协会来匹配相机之间的面孔。 如果脸部匹配并且确定了主要用户,则创建面部对并将其用作用于初始化对象跟踪的存储器中的第一数据点。 此外,可以提取用户面部的特征,并且图像之间的这些特征的位置变化可以确定将为该特定帧使用什么跟踪方法。
-