Abstract:
A method and system for training a user authentication by voice signal are described. In one embodiment, a set of feature vectors are decomposed into speaker-specific recognition units. The speaker-specific recognition units are used to compute distribution values to train the voice signal. In addition, spectral feature vectors are decomposed into speaker-specific characteristic units which are compared to the speaker-specific distribution values. If the speaker-specific characteristic units are within a threshold limit of the speaker-specific distribution values, the speech signal is authenticated.
Abstract:
Systems and methods for analysis and validation of language models trained using data that is unavailable or inaccessible are provided. One example method includes, at an electronic device with one or more processors and memory, obtaining a first set of data corresponding to one or more tokens predicted based on one or more previous tokens. The method determines a probability that the first set of data corresponds to a prediction generated by a first language model trained using a user privacy preserving training process. In accordance with a determination that the probability is within a predetermined range, the method determines that the one or more tokens correspond to a prediction associated with the user privacy preserving training process and outputs a predicted token sequence including the one or more tokens and the one or more previous tokens.
Abstract:
Systems and processes for word prediction using multiple contexts are provided. For example, a plurality of words are received. A first word context including a first plurality of received words, and a second word context corresponding to the first plurality of received words and a second plurality of received words, are obtained. A first current word probability is determined based on a first language model using the first word context. A second current word probability is determined based on a second language model using the second word context. A third current word probability is determined based on the second language model using the first word context. A fourth current word probability is determined based on the first current word probability, the second current word probability, and the third current word probability. An output is provided, to a user, including a current word prediction based on the fourth current word probability.
Abstract:
Methods, systems, and computer-readable media related to a technique for providing handwriting input functionality on a user device. A handwriting recognition module is trained to have a repertoire comprising multiple non-overlapping scripts and capable of recognizing tens of thousands of characters using a single handwriting recognition model. The handwriting input module provides real-time, stroke-order and stroke-direction independent handwriting recognition for multi-character handwriting input. In particular, real-time, stroke-order and stroke-direction independent handwriting recognition is provided for multi-character, or sentence level Chinese handwriting recognition. User interfaces for providing the handwriting input functionality are also disclosed.
Abstract:
An example process includes: obtaining input token(s); determining, using a joint prediction model, based on the input token(s): a first predicted token following the input token(s) and a second predicted token following the first predicted token; and a first user action to be performed on the first predicted token, where determining the first user action includes: determining a first reward value for performing the first user action based on a first current reward value for performing the first user action and a second reward value for performing a second user action on the second predicted token; outputting the first predicted token; detecting a user action performed on the first predicted token; and in accordance with a determination that the detected user action does not match the first user action: causing parameters of the joint prediction model to be updated, the parameters being configured to determine the first user action.
Abstract:
Systems and processes for operating an intelligent automated assistant are provided. In one example process, one or more input words can be received. The process can extract, based on the one or more input words, seed data for unsupervised training of a first learning network. Training data that includes a collection of words having typographical errors for the first learning network can be obtained. The process can determine, using the first learning network and based on the seed data and the training data, one or more output words having a probability distribution corresponding to a probability distribution of the training data. The one or more output words can include typographical errors. The process can generate, based on the determined one or more output words, a data set for supervised training of a second learning network. The second learning network can provide one or more typographical error suggestions.
Abstract:
Systems and methods for proactively identifying and surfacing relevant content on an electronic device with a touch-sensitive display are disclosed herein. In one aspect, a method includes presenting content in a first application. At least a portion of the content is presented without requiring input from a user. The method further includes receiving a request to open a second application. In response to receiving the request, the second application is presented with an input-receiving field. Before receiving any user input at the input-receiving field, a selectable user interface object is displayed with an indication that the portion of the content was viewed in the first application, allowing the user to paste at least the portion of the content into the input-receiving field. In response to detecting a selection of the selectable user interface object, the portion of the content is pasted into the input-receiving field.
Abstract:
Systems and methods for proactively identifying and surfacing relevant content are disclosed herein. An example method includes: detecting, via the touch-sensitive display, a search activation gesture from a user of the electronic device. The method also includes: in response to detecting only the search activation gesture, displaying a search interface on substantially all of the touch-sensitive display, the search interface including: (i) a search entry portion; and (ii) a predictions portion with one or more user interface objects each associated with a respective locally-installed application. Each respective locally-installed application is selected from among a plurality of locally-installed applications for inclusion in the predictions portion based on an application usage history associated with the user of the electronic device.
Abstract:
Systems and methods for proactively identifying and surfacing relevant content are disclosed herein. An example method includes: detecting, via the touch-sensitive display, a search activation gesture from a user of the electronic device. The method also includes: in response to detecting only the search activation gesture, displaying a search interface on substantially all of the touch-sensitive display, the search interface including: (i) a search entry portion; and (ii) a predictions portion with one or more user interface objects each associated with a respective locally-installed application. Each respective locally-installed application is selected from among a plurality of locally-installed applications for inclusion in the predictions portion based on an application usage history associated with the user of the electronic device.
Abstract:
A method and system for training a user authentication by voice signal are described. In one embodiment, a set of feature vectors are decomposed into speaker-specific recognition units. The speaker-specific recognition units are used to compute distribution values to train the voice signal. In addition, spectral feature vectors are decomposed into speaker-specific characteristic units which are compared to the speaker-specific distribution values. If the speaker-specific characteristic units are within a threshold limit of the speaker-specific distribution values, the speech signal is authenticated.