Abstract:
Systems for detecting an amount and/or location of a force applied to a device using a piezoelectric film are provided. One example system can include a transparent piezoelectric film for generating an electric charge in response to a deformation of the film. Electrodes positioned on opposite surfaces of the piezoelectric film can be used to detect the generated electric charge and determine an amount and/or location of force applied to the film based on the generated electric charge. In another embodiment, the system can include a capacitive touch sensor for determining a location of a touch event on the device.
Abstract:
Self capacitance touch circuits to cancel the effects of parasitic capacitance in a touch sensitive device are disclosed. One circuit can generate a parasitic capacitance cancelation signal that can be injected into touch sensing circuitry to cancel the parasitic capacitance. Another circuit can adjust the phase and magnitude of the parasitic capacitance cancelation signal based on characteristics of channels in the touch sensing circuitry so as to fine tune the parasitic capacitance cancelations. Another circuit can drive a guard plate and touch panel electrodes so as to cancel the parasitic capacitances between the panel and the plate and between the electrodes.
Abstract:
A touch input device configured to detect stylus signals generated by an external stylus is provided. The touch input device includes a plurality of stylus signal detectors that can receive the stylus signal and estimate the start and end time of the stylus signal in order to facilitate windowed demodulation of signal. The touch input device also includes circuitry to determine which of the plurality of detectors is most likely to have received the stylus signal and based on that determination can demodulate the signal and extract data embedded within the stylus signal.
Abstract:
A touch controller that can configure touch circuitry according to a scan plan, which can define a sequence of scan events to be performed on a touch panel is disclosed. The touch controller can include a configurable transmit section to generate stimulation signals to drive the panel, a configurable receive section to receive and process touch signals from the panel, and a configurable memory to store the touch signals. The touch controller can also include a programmable scan engine to configure the transmit section, the receive section, and the memory according to the scan plan. The touch controller advantageously provides more robust and flexible touch circuitry to handle various types of touch events at the panel. An active stylus that can generate stimulation signals that can be detected by the touch controller during various touch events at the panel is also disclosed.
Abstract:
Algorithms can be used to reduce stylus tip wobble for a stylus translating on a surface over and between electrodes of a touch sensor panel. In some examples, a first position estimate can be calculated using a first position calculation method and a second position estimate can be calculated using a second position calculation method. The position of the stylus can be determined based on a weighted combination of the first and second position estimates. In some examples, the first position estimate can be calculated using an even-point centroid of signal contributions from an even number of electrodes of a touch sensor panel and the second position estimate can be calculated using an odd-point centroid of signal contributions from an odd number of electrodes. In some examples, the weighting can be assigned based on a ratio of the two largest amplitude signals and based on a ratio of the second and third largest amplitude signals.
Abstract:
A touch sensor may overlap a display. A transparent shield layer that is grounded around its edges may be interposed between the display and the touch sensor to help prevent noise from display data lines from reaching the touch sensor. The data lines may extend along a first dimension. The touch sensor may have first elongated electrodes that extend along the first dimension and second elongated electrodes that extend along a second dimension that is perpendicular to the first dimension. The second electrodes may be interposed between the first electrodes and the data lines. Pen present electrodes may be used to gather pen present data associated with a stylus on the touch sensor. Adjacent noise sensors may collect noise data that is removed from the pen present data.
Abstract:
An algorithm for reducing stylus tip wobble for a stylus translating on a surface over and between electrodes of a touch sensor panel is disclosed. In some examples, a first position estimate can be calculated using a first position calculation method and a second position estimate can be calculated using a second position calculation method. The position of the stylus can be determined based on a weighted combination of the first and second position estimates. In some examples, the first position estimate can be calculated using an even-point centroid of signal contributions from an even number of electrodes of a touch sensor panel and the second position estimate can be calculated using an odd-point centroid of signal contributions from an odd number of electrodes. In some examples, the weighting can be assigned based on a ratio of the two largest amplitude signals and based on a ratio of the second and third largest amplitude signals.
Abstract:
A touch panel electrode structure for user grounding correction in a touch panel is discloses. The electrode structure can include an array of electrodes for sensing a touch at the panel, and multiple jumpers for selectively coupling groups of the electrodes together to form electrode rows and columns that cross each other. In some examples, the array can have a linear configuration and can form the rows and columns by coupling diagonally adjacent electrodes using the jumpers in a zigzag pattern, or the array can have a diamond configuration and can form the rows and columns by coupling linearly adjacent electrodes using the jumpers in a linear pattern. In various examples, each electrode can have a solid structure with a square shape, a reduced area with an outer electrode and a physically separate center electrode, a hollow center, or a solid structure with a hexagonal shape.
Abstract:
Various embodiments include a light source module with one or more light emitters and one or more light sensors that share an aperture via which light passes. One of the light sensors may measure illuminance received through the aperture (not illuminance from the light emitters) and send a signal indicating a measurement of the illuminance. The light source module may be integrated into a portable computing device having a controller. The controller may include logic to perform one or more device operations based on the measurement of illuminance, such as, but not limited to, controlling a device display brightness and/or controlling an auto exposure feature of the device camera. Calibration parameters for interpreting the signal may be determined via a calibration process.
Abstract:
Self capacitance touch circuits to cancel the effects of parasitic capacitance in a touch sensitive device are disclosed. One circuit can generate a parasitic capacitance cancelation signal that can be injected into touch sensing circuitry to cancel the parasitic capacitance. Another circuit can adjust the phase and magnitude of the parasitic capacitance cancelation signal based on characteristics of channels in the touch sensing circuitry so as to fine tune the parasitic capacitance cancelations. Another circuit can drive a guard plate and touch panel electrodes so as to cancel the parasitic capacitances between the panel and the plate and between the electrodes.