摘要:
Embodiments of the invention generally provide a method and apparatus that is configured to reduce the effects of interference that is undesirably provided to a transmitter signal that is delivered from a transmitter signal generating device to a sensor processor to determine if an input object is disposed within a touch sensing region of a touch sensing device. In one embodiment, the sensor processor includes a receiver channel that has circuitry that is configured to separately receive a transmitter signal delivered from a display processor and a sensor processor reference signal that is based on a display processor reference signal to reliably sense the presence of an object. Embodiments of the invention described herein thus provide an improved apparatus and method for reliably sensing the presence of an object by a touch sensing device.
摘要:
A processing system for a capacitive touch screen comprises sensor circuitry and control logic. The sensor circuitry is configured to communicatively couple with sensor electrodes of the capacitive touch screen. The control logic is configured to operate the capacitive touch screen in a first mode comprising interference sensing at a first level and input object sensing. The control logic is also configured to operate the capacitive touch screen in a second mode instead of the first mode in response to: interference measured in the first mode meeting an interference condition; and a determination that input is in a sensing region of the capacitive touch screen. Operating in the first mode, interference sensing is performed during a non-display update time. Operating in the second mode, interference sensing with the capacitive touch screen is either not performed or is performed at a second level, lower in fidelity than the first level.
摘要:
In a method of interference avoidance for a capacitive sensor device, a transmitter signal is transmitted with a transmitter electrode of the capacitive sensor device. A resulting signal is received with a receiver electrode of the capacitive sensor device. The resulting signal corresponds to the transmitter signal. A first demodulated output is acquired by demodulating the resulting signal in a first way. A second demodulated output is acquired by demodulating the resulting signal in a second way, where the second way and the first way differ. A shift is made from using the first demodulated output for determining positional information to using the second demodulated output for determining positional information. The shift is based at least in part upon an amount of interference.
摘要:
The embodiments described herein provide devices and methods that facilitate improved performance. In one embodiment, an input device comprises a processing system, a transmitter sensor electrode, and a receiver sensor electrode, where the transmitter sensor electrode and the receiver sensor electrode are capacitively coupled. The processing system is configured to receive a resulting signal from the receiver sensor electrode, where the resulting signal includes responses that correspond to the transmitter signal. The processing system is further configured to separately accumulate, for each cycle of the transmitter waveform, a first portion and a second portion of the resulting signal to respectively produce a first accumulation and a second accumulation, wherein the first accumulation is used for determining user input to the input device and the second accumulation is used for determining interference, and wherein the first portion and the second portion are non-coterminous.
摘要:
Embodiments of the invention generally provide a method and system that is able to minimize or remove the affect of substantially non-random electrical interference on an input device's ability to reliably and accurately sense the position of an object. In one embodiment, the input device is configured to systematically correct for a cyclic variation in the electromagnetic interference (EMI) generated by components within the electronic system, such as interference generated by the process of refreshing or updating an image on a display module that affects the capacitive sensing measurements acquired from a plurality of capacitive sensing elements. However, in some embodiments of the invention, the performance of an input device is improved by reducing the affect that external interference generated outside of the electronic system have on the position sensing data acquired by the input device.
摘要:
The embodiments described herein provide devices and methods that facilitate improved performance. In one embodiment, an input device comprises a processing system, a transmitter sensor electrode, and a receiver sensor electrode, where the transmitter sensor electrode and the receiver sensor electrode are capacitively coupled. The processing system is configured to receive a resulting signal from the receiver sensor electrode, where the resulting signal includes responses that correspond to the transmitter signal. The processing system is further configured to separately accumulate, for each cycle of the transmitter waveform, a first portion and a second portion of the resulting signal to respectively produce a first accumulation and a second accumulation, wherein the first accumulation is used for determining user input to the input device and the second accumulation is used for determining interference, and wherein the first portion and the second portion are non-coterminous.
摘要:
Embodiments of the invention generally provide a method and system that is able to reduce the power consumption needed to drive sensor electrodes included within an input device. The power consumption of the input device is reduced by providing an intermediate electronic storage device that partially drives a sensor electrode before a driver module drives the sensor electrode the remaining amount to the second voltage potential.
摘要:
Devices and methods are provided that facilitate improved input device performance. The devices and methods utilize a transmitter sensor electrode and a receiver sensor electrode that are capacitively coupled to form a transcapacitance for capacitively sensing input objects in a sensing region. A measure of the transcapacitance may be used to determine positional information for the input objects in the sensing region. In accordance with the various embodiments, the devices and methods include a floating electrode that is ohmically insulated from other electrical elements during operation. A first portion of the floating electrode overlaps a portion of the transmitter sensor electrode and a second portion of the floating electrode overlaps a portion of the receiver sensor electrode. The floating electrode additionally includes at least one aperture within the first portion of the floating electrode, where the at least one aperture at least in part overlaps the transmitter sensor electrode.
摘要:
An integrated display and touch sensor device comprises a plurality of display pixels and a processing system communicatively coupled with a plurality of common voltage electrode segments and with a plurality of receiver sensor electrodes. The plurality of display pixels is configured for displaying information on the display. The processing system is configured for driving a voltage transition onto a common voltage electrode segment of the plurality of common voltage electrode segments. The voltage transition provides a common voltage for refreshing at least one display pixel of the plurality of display pixels, and generates a first electrical signal on at least one receiver sensor electrode of the plurality of receiver sensor electrodes. The processing system is also configured for acquiring a first measurement of a capacitive coupling between the driven common voltage electrode segment and the at least one receiver sensor electrode by measuring the first electrical signal.
摘要:
An input device comprises a processing system coupled with a plurality of receiver paths. The processing system comprises a first capacitor and a bypass switch. The first capacitor is configured to be selectively coupled with the plurality of receiver paths. The bypass switch is configured for bypassing the first capacitor. The processing system is configured to selectively couple a first receiver path of the plurality of receiver paths with the first capacitor; acquire a measurement of a first resulting signal from at least one of the first receiver path or a second receiver path of the plurality of receiver paths while the first receiver path is coupled with the first capacitor and while the bypass switch is not bypassing the first capacitor; and determine whether the first receiver path is ohmically coupled with the second receiver path based on the measurement of the first resulting signal.