Abstract:
A display substrate panel includes a substrate and multiple OLED elements disposed on the substrate, and further includes a thin film encapsulation layer disposed on the OLED elements and a light blocking layer disposed on the thin film encapsulation layer and located between two adjacent OLED elements. A display panel includes the above display substrate panel and a cover panel which is aligned and combined into a cell with the display substrate panel, wherein the cover panel includes a color film layer, and the color film layer has a red color film, a green color film and a blue color film which are disposed to correspond to the OLED elements.
Abstract:
The present disclosure provides an array substrate, an electroluminescent panel and a display device, to solve the problems of more manufacturing processes and complex structures of the large-sized OLED display panel in the related art. The array substrate includes: a substrate, a plurality of light sensors on the substrate, a flat layer on the light sensor, and a connected electrode layer on the flat layer, wherein each of the light sensors includes a first electrode, a photosensitive layer and a second electrode arranged in sequence on the substrate; wherein the connected electrode layer is connected with the second electrode through a via hole penetrating through the flat layer.
Abstract:
A manufacturing method of OLED microcavity structure is provided. The manufacturing method includes: forming a reflective anode on a substrate; forming a transparent conductive film layer having a thickness corresponding to a required pixel on the reflective anode; patterning the transparent conductive film layer and the reflective anode with a pixel mask corresponding to the required pixel to form a pattern of the required pixel; and repeating the above steps on a resultant structure surface according to display requirements until a pixel display structure required by a display device is obtained.
Abstract:
An array substrate, a manufacturing method thereof and a display device are provided. The manufacturing method includes: forming a light-shielding pattern layer, a buffer layer, an active layer, a gate insulating layer and a gate electrode on a base substrate, which are away from the base substrate in sequence; depositing an amorphous silicon (a-Si) film on the base substrate in a temperature range of 15-150° C.; forming a first interlayer dielectric (ILD) at least disposed above the active layer by patterning the a-Si film; forming through holes in the first ILD, through which a source contact region and a drain contact region of the active layer are exposed; and forming a source electrode and a drain electrode on the first ILD, which are respectively connected with the source contact region and the drain contact region via the through holes.
Abstract:
The present invention discloses an array substrate and a preparation method thereof, a display panel and a display device, so as to solve the problem that the performance of the oxide TFT may be reduced and even out of work due to relatively great shift of the threshold voltage of the oxide TFT since the water, oxygen and hydrogen groups may permeate to the active layer of the oxide TFT from the passivation layer above the oxide TFT. The array substrate comprises a base substrate, an oxide thin film transistor TFT formed on the base substrate, a passivation layer being arranged above the oxide TFT, the passivation layer comprises a first film layer, the first film layer being a silicon oxide film; the passivation further comprises a second film layer formed on the first film layer, the second film layer is an alternate stack of silicon nitride films and silicon oxide films, a base layer of the second film layer close to the first film layer is a silicon nitride film; wherein the thickness of the first film layer is greater than the thickness of the second film layer.