SYSTEMS AND METHODS FOR PRECISE NAVIGATION OF AUTONOMOUS DEVICES

    公开(公告)号:US20220026911A1

    公开(公告)日:2022-01-27

    申请号:US17409274

    申请日:2021-08-23

    Abstract: The safe operation and navigation of robots is an active research topic for many real-world applications, such as the automation of large industrial equipment. This technological field often requires heavy machines with arbitrary shapes to navigate very close to obstacles, a challenging and largely unsolved problem. To address this issue, a new planning architecture is developed that allows wheeled vehicles to navigate safely and without human supervision in cluttered environments. The inventive methods and systems disclosed herein belong to the Model Predictive Control (MPC) family of local planning algorithms. The technological features disclosed herein works in the space of two-dimensional (2D) occupancy grids and plans in motor command space using a black box forward model for state inference. Compared to the conventional methods and systems, the inventive methods and systems disclosed herein include several properties that make it scalable and applicable to a production environment. The inventive concepts disclosed herein are at least deterministic, computationally efficient, run in constant time and can be deployed in many common non-holonomic systems.

    Systems and methods for precise navigation of autonomous devices

    公开(公告)号:US11099575B2

    公开(公告)日:2021-08-24

    申请号:US16260590

    申请日:2019-01-29

    Abstract: The safe operation and navigation of robots is an active research topic for many real-world applications, such as the automation of large industrial equipment. This technological field often requires heavy machines with arbitrary shapes to navigate very close to obstacles, a challenging and largely unsolved problem. To address this issue, a new planning architecture is developed that allows wheeled vehicles to navigate safely and without human supervision in cluttered environments. The inventive methods and systems disclosed herein belong to the Model Predictive Control (MPC) family of local planning algorithms. The technological features disclosed herein works in the space of two-dimensional (2D) occupancy grids and plans in motor command space using a black box forward model for state inference. Compared to the conventional methods and systems, the inventive methods and systems disclosed herein include several properties that make it scalable and applicable to a production environment. The inventive concepts disclosed herein are at least deterministic, computationally efficient, run in constant time and can be deployed in many common non-holonomic systems.

    PERSISTENT PREDICTOR APPARATUS AND METHODS FOR TASK SWITCHING

    公开(公告)号:US20190030713A1

    公开(公告)日:2019-01-31

    申请号:US16150609

    申请日:2018-10-03

    Abstract: An apparatus and methods for training and/or operating a robotic device to perform a target task autonomously. The target task execution may be configured based on analysis of sensory context by the robot. Target action may comprise execution of two or more mutually exclusive actions for a given context. The robotic device may be operable in accordance with a persistent switching process. For a given sensor input, the switching process may be trained to select one of two or more alternative actions based on a prior action being executed. Switching process operation may comprise assigning priorities to the available tasks based on the sensory context; the task priorities may be modified during training based on input from a trainer. The predicted task priorities may be filtered by a “persistent winner-take-all process configured to switch from a current task to another task based on the priority breaching a switching threshold.

    Hierarchical robotic controller apparatus and methods

    公开(公告)号:US09792546B2

    公开(公告)日:2017-10-17

    申请号:US13918298

    申请日:2013-06-14

    CPC classification number: G06N3/049 G06N3/008

    Abstract: A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. The remote controller may comprise multiple control elements configured to activate respective portions of the robot platform. Based on training, the remote controller may configure composite controls configured based two or more of control elements. Activation of a composite control may enable the robot to perform a task.

    PREDICTIVE ROBOTIC CONTROLLER APPARATUS AND METHODS
    40.
    发明申请
    PREDICTIVE ROBOTIC CONTROLLER APPARATUS AND METHODS 审中-公开
    预测机器人控制器设备及方法

    公开(公告)号:US20160303738A1

    公开(公告)日:2016-10-20

    申请号:US15132003

    申请日:2016-04-18

    Abstract: Robotic devices may be trained by a user guiding the robot along target action trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control signal based on one or more of the user guidance, sensory input, performance measure, and/or other information. Training may comprise a plurality of trials, wherein for a given context the user and the robot's controller may collaborate to develop an association between the context and the target action. Upon developing the association, the adaptive controller may be capable of generating the control signal and/or an action indication prior and/or in lieu of user input. The predictive control functionality attained by the controller may enable autonomous operation of robotic devices obviating a need for continuing user guidance.

    Abstract translation: 机器人设备可以由用户使用输入信号沿着目标动作轨迹引导机器人进行训练。 机器人设备可以包括自适应控制器,其被配置为基于用户引导,感觉输入,性能测量和/或其他信息中的一个或多个来产生控制信号。 培训可以包括多个试验,其中对于给定的上下文,用户和机器人的控制器可以协作以在上下文和目标动作之间建立关联。 在开发关联时,自适应控制器可以能够在用户输入之前和/或代替用户输入时产生控制信号和/或动作指示。 由控制器获得的预测控制功能可以实现机器人设备的自主操作,从而避免需要持续的用户指导。

Patent Agency Ranking