Optical fiber distribution system
    31.
    发明授权

    公开(公告)号:US11002936B2

    公开(公告)日:2021-05-11

    申请号:US16994090

    申请日:2020-08-14

    Abstract: A cable mount for fixing a strength member of a fiber optic cable to a fixture includes a front end, a rear end, and a longitudinal channel therebetween, the channel defined by upper and lower transverse walls and a vertical divider wall. The channel receives a portion of the cable. A strength member pocket receives the strength member of the cable, the pocket located on an opposite side of the divider wall from the longitudinal channel, the pocket communicating with the longitudinal channel through an opening on the divider wall. A strength member clamp fixes the strength member of the cable against axial pull. Cable management structures in the form of spools define at least one notch that communicates with the longitudinal channel for guiding optical fibers extending from a jacket either upwardly or downwardly therethrough. The cable mount also allows routing of the optical fibers through the longitudinal channel all the way from the rear end to the front end.

    Telecommunications distribution elements

    公开(公告)号:US10788639B2

    公开(公告)日:2020-09-29

    申请号:US16811850

    申请日:2020-03-06

    Abstract: A hinge structure (2202) for pivotally mounting a first telecommunications element (2256) to a second telecommunications element (2224/2210) includes a hinge pin (2203) provided on the first element (2256) and a hinge pin receiver (2204) provided on the second element (2224/2210). The hinge pin (2203) defines a notch (2206) separating the pin (2203) into two pin halves (2205). The hinge pin receiver (2204) defines two sets of opposing surfaces (2214), the two sets (2214) separated by a divider (2212), the divider (2212) configured to be accommodated by the notch (2206) when the hinge pin (2203) is inserted into the hinge pin receiver (2204), wherein each opposing surface set (2214) defines a slot (2213) for receiving each pin half (2205).

    Telecommunications distribution elements

    公开(公告)号:US10705306B2

    公开(公告)日:2020-07-07

    申请号:US16331771

    申请日:2017-09-08

    Abstract: A fiber optic telecommunications device (2302/2402/2502) includes a first fiber optic connection location (2308) defined on the telecommunications device (2302/2402/2502), wherein a plurality of optical fibers (2307) extends into the telecommunications device (2302/2402/2502) from the first fiber optic connection location (2308). A plurality of second fiber optic connection locations (2309) are movably disposed on the telecommunications device (2302/2402/2502). A flexible substrate (2306/2506) is positioned between the first fiber optic connection location (2308) and the plurality of second fiber optic connection locations (2309), the flexible substrate (2306/2506) rigidly supporting the plurality of optical fibers (2307) and relaying the plurality of fibers (2307) from the first fiber optic connection location (2308) to each of the second fiber optic connection locations (2309).

    Optical fiber distribution system with staggered cable guides

    公开(公告)号:US10345546B2

    公开(公告)日:2019-07-09

    申请号:US15928598

    申请日:2018-03-22

    Abstract: A cable management structure (100, 200, 300) for an optical fiber distribution rack (10) is disclosed. In one aspect, the cable management structure (100) supports cables extending from an optical fiber distribution element (50) supported by the rack (10). In one embodiment, a plurality of first cable support guides (102a) are vertically aligned along a first plane (190) while a plurality of second cable support guides (102b) are vertically aligned along a second plane (192). As presented, the first cable support guides (102a) are offset from the second cable support guides (102b) such that the first plane (190) is horizontally recessed from the second plane (192). In one embodiment a side channel frame (130) is provided to support the cable support guides (102). In another embodiment, the optical fiber distribution element (50) is provided with linearly spaced mounting arrangements (60) configured for engagement with cable support guides (202, 302).

    Mounting system for telecommunications distribution elements

    公开(公告)号:US10295774B2

    公开(公告)日:2019-05-21

    申请号:US15822936

    申请日:2017-11-27

    Abstract: A mounting system (700/900) for locking two pieces of telecommunications equipment (610/810) to prevent relative sliding therebetween and relative separation therebetween in a direction generally perpendicular to the direction of the relative sliding includes a first locking feature (701/901) defined by a stud (702/902) with a stem portion (708/908) and a flange portion (710/910) having a larger profile than the stem portion (708/908) and a second locking feature (703/903) defined by a slot (704/904) with a receiver portion (712/912) and a retention portion (714/914). The receiver portion (712/912) is sized to accommodate the flange portion (710/910) of the stud (702/902) and the retention portion (714/914) is sized to accommodate the stem portion (708/908) but not the flange portion (710/910) of the stud (702/902). A third locking feature (705/905) prevents relative sliding between the two pieces of telecommunications equipment (610/810) once the stud stem portion (708/908) has been slid within the slot retention portion (714/914) and the stud flange portion (710/910) is out of alignment with the slot receiver portion (712/912).

    Telecommunications distribution elements

    公开(公告)号:US10261281B2

    公开(公告)日:2019-04-16

    申请号:US15564114

    申请日:2016-04-03

    Abstract: An optical fiber distribution element (1810) includes a chassis (1820), an optical device (1900) mounted to the chassis (1820), the optical device (1900) including a plurality of cables (2134) extending from the optical device (1900) into the chassis (1820), and a cable management device (2110/2210) mounted to the chassis (1820). The cable management device (2110/2210) includes a plurality of radius limiters in the form of spools (2132/2232) in a stacked arrangement for managing the cables (2134) extending from the optical device (1900) for further connection within the chassis (1820), wherein a first of the spools (2132/2232) defines a spool wall (2136/2236) having a different wall length than that of a second of the spools (2132/2232), wherein a first of the plurality of cables (2134) is routed around the first of the spools (2132/2232) and a second of the plurality of cables (2134) is routed around the second of the spools (2132/2232) that has a different spool wall length than that of the first of the spools (2132/2232).

    Telecommunications panel assembly with movable adapters

    公开(公告)号:US10254496B2

    公开(公告)日:2019-04-09

    申请号:US15568753

    申请日:2016-04-22

    Abstract: A telecommunications panel assembly (10) includes a chassis (14) defining a front (16), a top (20), a bottom (22), and two sides (24) and a plurality of adapter mounting modules (26) mounted to the chassis (14) at the front (16), each adapter mounting module (26) including a plurality of fiber optic adapters (36) mounted in a line. At least one of the adapter mounting modules (26) is mounted to the chassis (14) with a pair of supports (50) that are pivotable with respect to the at least one adapter module (26) such that the at least one adapter module (26) is removable from the chassis (14) and remountable at a position spaced linearly apart from another of the adapter mounting modules (26), wherein all of the adapter mounting modules (26) are also pivotally mounted about horizontal rotation axes (42) extending parallel to the top (20) and bottom (22) and transversely to the sides (24).

    Mounting system for telecommunications distribution elements

    公开(公告)号:US09829642B2

    公开(公告)日:2017-11-28

    申请号:US15030332

    申请日:2014-10-13

    CPC classification number: G02B6/3616 G02B6/2553 G02B6/262 G02B6/4455

    Abstract: A mounting system (700/900) for locking two pieces of telecommunications equipment (610/810) to prevent relative sliding therebetween and relative separation therebetween in a direction generally perpendicular to the direction of the relative sliding includes a first locking feature (701/901) defined by a stud (702/902) with a stem portion (708/908) and a flange portion (710/910) having a larger profile than the stem portion (708/908) and a second locking feature (703/903) defined by a slot (704/904) with a receiver portion (712/912) and a retention portion (714/914). The receiver portion (712/912) is sized to accommodate the flange portion (710/910) of the stud (702/902) and the retention portion (714/914) is sized to accommodate the stem portion (708/908) but not the flange portion (710/910) of the stud (702/902). A third locking feature (705/905) prevents relative sliding between the two pieces of telecommunications equipment (610/810) once the stud stem portion (708/908) has been slid within the slot retention portion (714/914) and the stud flange portion (710/910) is out of alignment with the slot receiver portion (712/912).

    Telecommunications distribution elements

    公开(公告)号:US12055779B2

    公开(公告)日:2024-08-06

    申请号:US18162556

    申请日:2023-01-31

    Abstract: An optical fiber distribution element (1810) includes a chassis (1820), an optical device (1900) mounted to the chassis (1820), the optical device (1900) including a plurality of cables (2134) extending from the optical device (1900) into the chassis (1820), and a cable management device (2110/2210) mounted to the chassis (1820). The cable management device (2110/2210) includes a plurality of radius limiters in the form of spools (2132/2232) in a stacked arrangement for managing the cables (2134) extending from the optical device (1900) for further connection within the chassis (1820), wherein a first of the spools (2132/2232) defines a spool wall (2136/2236) having a different wall length than that of a second of the spools (2132/2232), wherein a first of the plurality of cables (2134) is routed around the first of the spools (2132/2232) and a second of the plurality of cables (2134) is routed around the second of the spools (2132/2232) that has a different spool wall length than that of the first of the spools (2132/2232).

Patent Agency Ranking