Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device, performing calculations corresponding to a plurality of data set types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data set types, and utilizing the data-to-clock edge deviations for tuning the write strategy parameters corresponding to the data set types respectively.
Abstract:
A method of determining a write strategy when storing data on an optical disc in an optical storage device includes detecting a characteristic of the optical disc, determining an initial write strategy according to the detected characteristic of the optical disc, adjusting the initial write strategy by performing a write pulse adjustment including adjusting a first edge of a write pulse in the initial write strategy by a first time unit to thereby generate an adjusted write strategy, writing data on the optical disc utilizing the adjusted write strategy, measuring reproduced signal quality values when reading the data from the optical disc, and determining a write strategy according to the reproduced signal quality values.
Abstract:
An optical recording system and method. A radiation source provides a radiation beam writing marks separated by spaces on a rewritable optical disc. A pulse generator generates a recording pulse signal based on a preset data signal to drive the radiation source, wherein the recording pulse signal comprises a cooling pulse, and wherein the preset data signal corresponds to a mark and space of equal length and is recorded onto the rewritable optical disc in terms of a written mark and space. A pulse controller determines a final width for the cooling pulse according to a difference between lengths of the written mark and the written space.
Abstract:
A method, for tuning a plurality of write strategy parameters of an optical storage device, includes: detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device; performing calculations according to the lengths and a plurality of data set types to generate a plurality of calculation results respectively corresponding to the data set types, each of the data set types corresponding to a combination of at least a specific target pit length and a specific target land length or a combination of at least a specific target land length and a specific target pit length, the combination corresponding to a specific write strategy parameter; and utilizing the calculation results for tuning the write strategy parameters corresponding to the data set types, respectively.
Abstract:
An exemplary Viterbi decoding apparatus includes a Viterbi decoder and a level information generator. The Viterbi decoder is arranged for generating a first binary signal by decoding an input signal according to target level information. The level information generator is arranged to support a plurality of different hardware configurations each for level information generation, and operate in a target hardware configuration among the different hardware configurations to generate the target level information to the Viterbi decoder. An exemplary Viterbi decoding method includes: configuring a level information generator, arranged to support a plurality of different hardware configurations each for level information generation, to operate in a target hardware configuration among the different hardware configurations for generating target level information; and generating a first binary signal by performing Viterbi decoding upon an input signal according to the target level information generated from the level information generator.
Abstract:
A method for tuning a write strategy parameter of an optical storage device, includes: writing a segment of data according to a plurality of write strategies; reading the data back and detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device; performing calculations according to the lengths and a plurality of data types to generate a plurality of calculation results, each of the data types corresponding to at least a specific target pit length or at least a specific target land length; and utilizing the calculation results to determine a proper write strategy.
Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device, performing calculations corresponding to a plurality of data set types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data set types, and utilizing the data-to-clock edge deviations for tuning the write strategy parameters corresponding to the data set types respectively.
Abstract:
A data recording device. A random data generator randomly generates substitute data. A recording data generator receives original data and a recording address from a host, receives the substitute data, compares the recording address with a reference address, and outputs the substitute data according to the comparison result. An encoder generates a first data block according to the substitute data. A modulator modulates the first data block. An optical pickup records the modulated first data block on the optical recording medium according to the recording address.
Abstract:
The invention relates to recording on a medium, and in particular, to laser control during recording data on an optical medium. A laser control method for dynamically adjusting laser power during recording data onto an optical disc comprises: recording normal data onto the optical disc according to an initial laser power; stopping recording when a trigger is generated; reading back the recorded normal data and generating a first recording quality index; recording a test pattern at a test pattern starting point according to a selected laser power; reading back the test pattern and generating a second recording quality index; and determining an adaptive laser power to continually record the normal data according to the first recording quality index and the second recording quality index.
Abstract:
This specification discloses a recordable optical recording medium containing preinstalled information, the method of reading the preinstalled information, and the circuit thereof. The recordable optical recording medium containing preinstalled information is a substrate with a spiral pregroove. Microscopically, the pregroove has regular wiggles. They are featured in containing a first waveform, a second waveform, and a third waveform with the same fundamental wave cycle. The duty cycle of the first waveform is 1. The duty cycles of the second and third waveforms are distinct. The combinations of these duty cycles are used to record the preinstalled information. Moreover, the invention discloses a method and circuit of reading the preinstalled information. After obtaining the wobble signals, the method further takes the steps of phase corrections, integrations, and resetting to more accurately obtain the preinstalled information.