Abstract:
HPNA MxU network for an MxU, the MxU including a plurality of HPNA LANs, each of the HPNA LANs operating according to a synchronous communication specification. Each of the HPNA LANs includes a plurality of nodes, one of the nodes within each HPNA LAN being a gateway node, a selected one of the nodes within each HPNA LAN being defined a LAN-master node and each HPNA LAN is coupled with a WAN via the respective gateway node. The LAN-master nodes allow the gateway nodes to transmit within a selected HPNA LAN downstream signals during at least one time slot, and the LAN-master nodes allow the nodes other than the gateway nodes to transmit upstream signals within a selected HPNA LAN to the respective gateway or transmit HN signals within a selected HPNA LAN, between nodes other than the respective gateway nodes during at least another timeslot.
Abstract:
A complementary output stage in integrated circuit includes a P-channel transistor (MP1) the segmented into a first group of sections (MP1-1,2 . . . 12) and an N-channel transistor (MN1) segmented into a second group of sections (MN1-1,2 . . . 12). The sections of the first group are disposed in a plurality of N-type well regions (35), respectively, and the sections of the second group are disposed in a plurality of P-type well regions (36), respectively. The sections of the first group are alternately located with respect to the sections of the second group so as to form an interdigitated output stage area of the integrated circuit including the P-channel transistor (MP1) and the N-channel transistor (MN1) so that the higher amount of heat normally generated in the N-channel transistor is dissipated over the entire interdigitated output stage area and reduces peak temperatures in the N-channel transistor.