摘要:
Systems and methods for monitoring a subsurface formation property and for placing a borehole in the vicinity of a well in the formation. A slotted tubular is utilized to provide through-tubular signal transmission and/or reception using an antenna adapted to generate a magnetic dipole moment with a transverse or controllable orientation. Hydraulic isolation between the interior and exterior of the tubular at the slot is provided by a pressure barrier. The tubular also forms part of a system for accurately placing a well within a desired distance and orientation relative to an existing well.
摘要:
A method is disclosed for determining a position of a wellbore with respect to layer boundaries in earth formations. The method includes projecting a trajectory of the wellbore onto an initial model of the earth formations, selecting a segment of the trajectory and calculating along the segment expected responses of a well logging instrument. Differences between the expected responses and responses measured by the instrument along the segment are determined. The model is adjusted, the expected responses are recalculated and the differences are again determined. These are repeated until the differences fall below a selected threshold. In one embodiment, the trajectory of the wellbore can be adjusted to remain within a selected distance of a selected one of the layer boundaries.
摘要:
Systems and methods are provided for determining various subsurface formation parameters from electromagnetic measurements. Formulas are disclosed for field components in a coordinate system tied to the logging tool. Closed form expressions for a magnetic field distribution in a homogeneous anisotropic medium are derived from Moran-Gianzero formulas. A complete coupling of a tri-axial system of transmitters and receivers is derived in the tool coordinate system, allowing direct inversion of the measurements for horizontal and vertical conductivity and dip and strike (dip-azimuth) angles. Closed form expressions for these four quantities in the low frequency limit are also derived.
摘要:
Methods and apparatus are disclosed for minimizing or eliminating an undesired axial electric current induced along a subsurface borehole in the process of subsurface measurements with transmitter and/or receiver antennas which are substantially time varying magnetic dipoles with their dipole moments aligned at an angle to the axis of the borehole. Some antennas are disposed within the borehole on instruments having a non-conductive support member. One instrument includes a conductive all-metal body with an antenna adapted for induction frequencies. Antenna shields adapted for controlled current flow are also provided with an all-metal instrument. Methods include providing an alternate path for the current along the instrument body. Another method includes emitting a controlled current to counter the undesired current. Another method corrects for the effect of the current using a superposition technique. An embodiment of the instrument includes an antenna disposed between a pair of electrically coupled electrodes. The antenna is disposed on the instrument such that it comprises a tilted or transverse magnetic dipole. Another embodiment of the instrument includes a non-conductive housing with a conductive segment disposed thereon. An antenna is disposed on the instrument about the conductive segment. Another embodiment includes an antenna disposed between two pairs of electrodes with means to measure a voltage at the electrodes when electromagnetic energy is transmitted within the borehole. Yet another instrument includes an antenna disposed between a first pair of electrodes and means to measure a voltage at the electrodes when electromagnetic energy is transmitted within the borehole. This embodiment also includes means to energize a second electrode pair in response to the voltage measured at the first electrode pair.
摘要:
A method for characterizing a subterranean formation traversed by a wellbore includes generating a reservoir model using data collected from the formation, generating a perturbation object comprising a perturbation of the wellbore, integrating the perturbation object with the reservoir model, and forming a geological model wherein the perturbation object is integrated in the reservoir model.
摘要:
A method is provided for determining formation resistivity, anisotropy and dip from wellbore measurements includes moving a well logging instrument through subsurface formations. The instrument includes longitudinal magnetic dipoles and at least one of tilted and transverse magnetic dipoles. Formation layer boundaries and horizontal resistivities of the formation layers are determined from longitudinal magnetic dipole measurements. Vertical resistivities of the formation layers are determined by inversion of anisotropy sensitive measurements. Improved vertical resistivities of the formation layers and dips are determined by inverting symmetrized and anti-symmetrized measurements. Improved vertical resistivities, improved boundaries and improved dips are determined by inversion of the all dipole measurements. Improved horizontal resistivities, further improved layer boundaries and further improved dips are determined by inversion of all dipole measurements.
摘要:
Methods for three-dimensionally characterizing a reservoir while drilling a high angle or horizontal wellbore through the reservoir are disclosed. An initial reservoir model for the reservoir is selected and a section is extracted for a planned trajectory of the wellbore. A secondary model is generated by performing secondary modeling for at least part of the planned trajectory. An area of interest is identified within the secondary model where statistical uncertainty is high. Possible causes of the statistical uncertainty are identified for the area of interest within the secondary model that are not present or accounted for in the initial reservoir model. A set of parameters for the area of interest are defined at that are based on the possible causes of statistical uncertainty. The area of interest is logged with at least one logging while drilling LWD tool. Sensitivities of the LWD tool response to the subset of parameters are evaluated by performing at least one tertiary model for a range of the subset of parameters. The most sensitive parameters from the subset of parameters and corresponding measurements are identified. One or more real-time LWD measurements to be used for proactive well placement along the planned trajectory are identified and are based on the most sensitive parameters. The initial reservoir model is updated while drilling with information from the tertiary model. The model update is based on physics-based modeling or on inversion and on running multiple models and selection of a best candidate model based on correlations between the tool measurements and modeled results for each geologic model.
摘要:
A method for displaying a formation model while drilling a wellbore in the formation includes operating a well logging instrument at a measurement point in the formation along a wellbore while the wellbore is being drilled. Measurement data regarding the formation are obtained from the well logging instrument. An actual orientation of a geological structure is determined from the measurement data. A trajectory of the wellbore is displayed in three dimensions as it is being drilled through the formation. While drilling the wellbore, the geological structure is displayed along the trajectory of the wellbore according to the determined actual orientation of the geological structure. The actual orientation reflects an azimuth angle of planes corresponding to the geological structure. The trajectory of the wellbore is changed in response to displaying the determined actual orientation of the geological structure relative to the trajectory.
摘要:
A method for displaying a formation model includes displaying a trajectory representing a three-dimensional structure of the wellbore; and displaying objects representing a bed boundary along the trajectory, wherein the objects are displayed at distances from the trajectory according to measurement data, wherein the objects are displayed in orientations reflecting azimuth angles of planes corresponding to the bed boundary.
摘要:
A computer-based method is provided for modeling and visualizing a property of a subterranean earth formation while drilling a borehole therethrough. The computer-based method gathers electromagnetic signals corresponding to a current measurement station location of a measurement-while-drilling tool, and generates a multilayer model corresponding to such electromagnetic signals. A histogram characterizing uncertainty of the multilayer model is used to generate a set of color hue values which represent predictions of the formation property for depth values above/below the tool, and a corresponding set of saturation values (which represent uncertainties for these predictions). A curtain plot is generated and displayed. The curtain plot employs colors to visualize formation property predictions for depth values above/below the tool over successive measurement station locations. A new column of the curtain plot is generated for the current measurement station location. The color values of the new column are based upon the set of color hue values and the set of saturation values derived from the histogram. The saturation levels of the new column represent uncertainties for the corresponding predictions.