NEURAL ARCHITECTURE SEARCH
    32.
    发明申请

    公开(公告)号:US20210232929A1

    公开(公告)日:2021-07-29

    申请号:US17232803

    申请日:2021-04-16

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network, a batch of output sequences, each output sequence in the batch specifying a respective subset of a plurality of components of a large neural network that should be active during the processing of inputs by the large neural network; for each output sequence in the batch: determining a performance metric of the large neural network on the particular neural network task (i) in accordance with current values of the large network parameters and (ii) with only the subset of components specified by the output sequences active; and using the performance metrics for the output sequences in the batch to adjust the current values of the controller parameters of the controller neural network.

    NEURAL ARCHITECTURE SEARCH FOR DENSE IMAGE PREDICTION TASKS

    公开(公告)号:US20210081796A1

    公开(公告)日:2021-03-18

    申请号:US17107745

    申请日:2020-11-30

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes obtaining training data for a dense image prediction task; and determining an architecture for a neural network configured to perform the dense image prediction task, comprising: searching a space of candidate architectures to identify one or more best performing architectures using the training data, wherein each candidate architecture in the space of candidate architectures comprises (i) the same first neural network backbone that is configured to receive an input image and to process the input image to generate a plurality of feature maps and (ii) a different dense prediction cell configured to process the plurality of feature maps and to generate an output for the dense image prediction task; and determining the architecture for the neural network based on the best performing candidate architectures.

    Neural architecture search for dense image prediction tasks

    公开(公告)号:US10853726B2

    公开(公告)日:2020-12-01

    申请号:US16425900

    申请日:2019-05-29

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes obtaining training data for a dense image prediction task; and determining an architecture for a neural network configured to perform the dense image prediction task, comprising: searching a space of candidate architectures to identify one or more best performing architectures using the training data, wherein each candidate architecture in the space of candidate architectures comprises (i) the same first neural network backbone that is configured to receive an input image and to process the input image to generate a plurality of feature maps and (ii) a different dense prediction cell configured to process the plurality of feature maps and to generate an output for the dense image prediction task; and determining the architecture for the neural network based on the best performing candidate architectures.

    LEARNING DATA AUGMENTATION POLICIES
    35.
    发明申请

    公开(公告)号:US20190354895A1

    公开(公告)日:2019-11-21

    申请号:US16417133

    申请日:2019-05-20

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for learning a data augmentation policy for training a machine learning model. In one aspect, a method includes: receiving training data for training a machine learning model to perform a particular machine learning task; determining multiple data augmentation policies, comprising, at each of multiple time steps: generating a current data augmentation policy based on quality measures of data augmentation policies generated at previous time steps; training a machine learning model on the training data using the current data augmentation policy; and determining a quality measure of the current data augmentation policy using the machine learning model after it has been trained using the current data augmentation policy; and selecting a final data augmentation policy based on the quality measures of the determined data augmentation policies.

    Learning Data Augmentation Strategies for Object Detection

    公开(公告)号:US20190354817A1

    公开(公告)日:2019-11-21

    申请号:US16416848

    申请日:2019-05-20

    Applicant: Google LLC

    Abstract: Example aspects of the present disclosure are directed to systems and methods for learning data augmentation strategies for improved object detection model performance. In particular, example aspects of the present disclosure are directed to iterative reinforcement learning approaches in which, at each of a plurality of iterations, a controller model selects a series of one or more augmentation operations to be applied to training images to generate augmented images. For example, the controller model can select the augmentation operations from a defined search space of available operations which can, for example, include operations that augment the training image without modification of the locations of a target object and corresponding bounding shape within the image and/or operations that do modify the locations of the target object and bounding shape within the training image.

    Learning data augmentation policies

    公开(公告)号:US12293266B2

    公开(公告)日:2025-05-06

    申请号:US18584625

    申请日:2024-02-22

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for learning a data augmentation policy for training a machine learning model. In one aspect, a method includes: receiving training data for training a machine learning model to perform a particular machine learning task; determining multiple data augmentation policies, comprising, at each of multiple time steps: generating a current data augmentation policy based on quality measures of data augmentation policies generated at previous time steps; training a machine learning model on the training data using the current data augmentation policy; and determining a quality measure of the current data augmentation policy using the machine learning model after it has been trained using the current data augmentation policy; and selecting a final data augmentation policy based on the quality measures of the determined data augmentation policies.

    Neural architecture search
    39.
    发明授权

    公开(公告)号:US11829874B2

    公开(公告)日:2023-11-28

    申请号:US17340959

    申请日:2021-06-07

    Applicant: Google LLC

    CPC classification number: G06N3/08 G06F18/217 G06N3/044 G06N3/045

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network, a batch of output sequences, each output sequence in the batch defining a respective architecture of a child neural network that is configured to perform a particular neural network task; for each output sequence in the batch: training a respective instance of the child neural network having the architecture defined by the output sequence; evaluating a performance of the trained instance of the child neural network on the particular neural network task to determine a performance metric for the trained instance of the child neural network on the particular neural network task; and using the performance metrics for the trained instances of the child neural network to adjust the current values of the controller parameters of the controller neural network.

    Learning Data Augmentation Strategies for Object Detection

    公开(公告)号:US20230274532A1

    公开(公告)日:2023-08-31

    申请号:US18313772

    申请日:2023-05-08

    Applicant: Google LLC

    Abstract: Example aspects of the present disclosure are directed to systems and methods for learning data augmentation strategies for improved object detection model performance. In particular, example aspects of the present disclosure are directed to iterative reinforcement learning approaches in which, at each of a plurality of iterations, a controller model selects a series of one or more augmentation operations to be applied to training images to generate augmented images. For example, the controller model can select the augmentation operations from a defined search space of available operations which can, for example, include operations that augment the training image without modification of the locations of a target object and corresponding bounding shape within the image and/or operations that do modify the locations of the target object and bounding shape within the training image.

Patent Agency Ranking