-
公开(公告)号:US20240354373A1
公开(公告)日:2024-10-24
申请号:US18628037
申请日:2024-04-05
申请人: Genki Watanabe
发明人: Genki Watanabe
CPC分类号: G06F18/217 , G06F18/22
摘要: An information processing apparatus includes: circuitry configured to: evaluate similarity between first feature information and second feature information for each of multiple items of data, the first feature information indicating a feature of the data, the second feature information indicating a feature of a first character string designated in input information; evaluate, for a collection of data including the multiple items of data, a state of variation of the first feature information of the items of data belonging to the collection of data; and generate display information of a screen that displays the collection of data in a mode based on a result of evaluation of the similarity and a result of evaluation of the state of variation.
-
2.
公开(公告)号:US20240348742A1
公开(公告)日:2024-10-17
申请号:US18755896
申请日:2024-06-27
申请人: NEC Corporation
发明人: Daichi HISADA , Takeshi MORIBE
IPC分类号: H04N5/76 , G06F18/21 , G06F18/40 , G06V10/94 , G06V20/40 , G06V20/52 , G08B13/196 , H04N5/765 , H04N5/77 , H04N5/915 , H04N7/18
CPC分类号: H04N5/76 , G06F18/217 , G06F18/40 , G06V10/945 , G06V20/41 , G06V20/52 , H04N7/181 , G06V20/44 , G08B13/19613 , G08B13/19671 , G08B13/19693 , H04N5/765 , H04N5/772 , H04N5/915
摘要: A video processing apparatus includes a video analyzer that analyzes video data captured by a surveillance camera, detects an event belonging to a specific category, and outputs a detection result, a display controller that displays, together with a video of the video data, a category setting screen for setting a category of an event included in the video, and a learning data accumulator that accumulates, as learning data together with the video data, category information set in accordance with an operation by an operator to the category setting screen. The video analyzer performs learning processing by using the learning data accumulated in the learning data accumulator.
-
公开(公告)号:US20240345566A1
公开(公告)日:2024-10-17
申请号:US18626984
申请日:2024-04-04
申请人: R4N63R Capital LLC
发明人: Prasad Narasimha AKELLA , Ananya Honnedevasthana ASHOK , Zakaria Ibrahim ASSOUL , Krishnendu CHAUDHURY , Sameer GUPTA , Sujay Venkata Krishna NARUMANCHI , David Scott PRAGER , Devashish SHANKAR , Ananth UGGIRALA , Yash Raj CHHABRA
IPC分类号: G05B19/418 , B25J9/16 , G01M99/00 , G05B19/423 , G05B23/02 , G06F9/448 , G06F9/48 , G06F11/07 , G06F11/34 , G06F16/22 , G06F16/23 , G06F16/2455 , G06F16/901 , G06F16/9035 , G06F16/904 , G06F18/21 , G06F30/20 , G06F30/23 , G06F30/27 , G06F111/10 , G06F111/20 , G06N3/006 , G06N3/008 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06N7/01 , G06N20/00 , G06Q10/06 , G06Q10/0631 , G06Q10/0639 , G06Q10/083 , G06Q50/26 , G06T19/00 , G06V10/25 , G06V10/44 , G06V10/82 , G06V20/52 , G06V40/20 , G09B19/00 , G16H10/60
CPC分类号: G05B19/4183 , G05B19/41835 , G06F9/4498 , G06F9/4881 , G06F11/0721 , G06F11/079 , G06F11/3452 , G06F16/2228 , G06F16/2365 , G06F16/24568 , G06F16/9024 , G06F16/9035 , G06F16/904 , G06F30/20 , G06F30/23 , G06F30/27 , G06N3/008 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06N7/01 , G06N20/00 , G06Q10/06 , G06Q10/063112 , G06Q10/06316 , G06Q10/06393 , G06Q10/06395 , G06Q10/06398 , G06T19/006 , G06V10/25 , G06V10/454 , G06V10/82 , G06V20/52 , G06V40/20 , G09B19/00 , B25J9/1664 , B25J9/1697 , G01M99/005 , G05B19/41865 , G05B19/423 , G05B23/0224 , G05B2219/32056 , G05B2219/36442 , G06F18/217 , G06F2111/10 , G06F2111/20 , G06N3/006 , G06Q10/083 , G06Q50/26 , G16H10/60
摘要: The systems and methods provide an action recognition and analytics tool for use in manufacturing, health care services, shipping, retailing and other similar contexts. Machine learning action recognition can be utilized to determine cycles, processes, actions, sequences, objects and or the like in one or more sensor streams. The sensor streams can include, but are not limited to, one or more video sensor frames, thermal sensor frames, infrared sensor frames, and or three-dimensional depth frames. The analytics tool can provide for automatic creation of certificates for each instance of a subject product or service. The certificate can string together snippets of the sensor streams along with indicators of cycles, processes, action, sequences, objects, parameters and the like captured in the sensor streams.
-
公开(公告)号:US12119088B2
公开(公告)日:2024-10-15
申请号:US17899539
申请日:2022-08-30
申请人: ILLUMINA, INC.
IPC分类号: G06F16/907 , G06F18/21 , G06F18/214 , G06F18/23 , G06F18/23211 , G06F18/24 , G06F18/2415 , G06F18/2431 , G06N3/04 , G06N3/08 , G06N3/084 , G06N7/01 , G06V10/26 , G06V10/44 , G06V10/75 , G06V10/762 , G06V10/764 , G06V10/77 , G06V10/778 , G06V10/82 , G06V10/98 , G06V20/69 , G16B40/00 , G16B40/20 , G06N5/046 , G06V20/40
CPC分类号: G16B40/20 , G06F16/907 , G06F18/214 , G06F18/217 , G06F18/23 , G06F18/23211 , G06F18/24 , G06F18/2415 , G06F18/2431 , G06N3/04 , G06N3/08 , G06N3/084 , G06N7/01 , G06V10/267 , G06V10/454 , G06V10/751 , G06V10/763 , G06V10/764 , G06V10/7715 , G06V10/7784 , G06V10/82 , G06V10/993 , G06V20/69 , G16B40/00 , G06N5/046 , G06V20/47
摘要: A system, a method and a non-transitory computer readable storage medium for base calling are described. The base calling method includes processing through a neural network first image data comprising images of clusters and their surrounding background captured by a sequencing system for one or more sequencing cycles of a sequencing run. The base calling method further includes producing a base call for one or more of the clusters of the one or more sequencing cycles of the sequencing run.
-
公开(公告)号:US12118721B2
公开(公告)日:2024-10-15
申请号:US18100543
申请日:2023-01-23
申请人: Owkin Inc. , Owkin France SAS
发明人: Pierre Courtiol , Olivier Moindrot , Charles Maussion , Charlie Saillard , Benoit Schmauch , Gilles Wainrib
IPC分类号: G06T7/00 , G06F18/21 , G06F18/214 , G06F18/23 , G06F18/2413 , G06N3/04 , G06T7/11 , G06T7/194 , G06V10/32 , G06V10/50 , G06V10/764 , G06V10/82 , G06V20/69
CPC分类号: G06T7/0012 , G06F18/214 , G06F18/2163 , G06F18/217 , G06F18/23 , G06F18/2413 , G06N3/04 , G06T7/11 , G06T7/194 , G06V10/32 , G06V10/50 , G06V10/764 , G06V10/82 , G06V20/695 , G06V20/698 , G06T2207/10056 , G06T2207/20081 , G06T2207/20084 , G06T2207/30024
摘要: A method and apparatus of a device that classifies an image is described. In an exemplary embodiment, the device segments the image into a region of interest that includes information useful for classification and a background region by applying a first convolutional neural network. In addition, the device tiles the region of interest into a set of tiles. For each tile, the device extracts a feature vector of that tile by applying a second convolutional neural network, where the features of the feature vectors represent local descriptors of the tile. Furthermore, the device processes the extracted feature vectors of the set of tiles to classify the image.
-
公开(公告)号:US12118436B2
公开(公告)日:2024-10-15
申请号:US17156069
申请日:2021-01-22
发明人: Dustin Stefan Hamerla , Abrasham Chowdhury , Christopher Adam Boyle , Joseph H. I. Bird , Melissa Ashley Moyer , Kyle Patrick Baker , Taylor C. Wells , Vaibhav Jajoo
IPC分类号: G06N20/00 , G06F3/0481 , G06F11/34 , G06F18/21 , G06F18/214
CPC分类号: G06N20/00 , G06F3/0481 , G06F11/3438 , G06F18/214 , G06F18/217
摘要: A system includes a computing platform including a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to track interactions with a user application during use of the user application, generate, based on tracking the interactions, interaction data identifying multiple interaction events during the use, and perform a validity assessment of the interaction data. The hardware processor is further configured to execute the software code to identify, based on the validity assessment, one or more anomalies in the interaction data, and output, based on identifying the one or more anomalies in the interaction data, one or more of the interaction events corresponding respectively to the one or more anomalies.
-
公开(公告)号:US12118033B2
公开(公告)日:2024-10-15
申请号:US17281883
申请日:2019-09-18
发明人: Rima Arnaout
IPC分类号: G06F18/21 , A61B8/08 , G06F16/583 , G06F18/2431 , G06T7/00 , G06T7/13 , G06V10/44 , G06V10/764
CPC分类号: G06F16/583 , G06F18/217 , G06F18/2431 , G06T7/0012 , G06T7/13 , G06V10/449 , G06V10/764 , G06T2207/10016 , G06T2207/20132
摘要: Systems and methods for medical image diagnoses in accordance with embodiments of the invention are illustrated. One embodiment includes a method for evaluating multimedia content. The method includes steps for receiving multimedia content and identifying a set of one or more image frames for each of several target views from the received multimedia content. For each target view, the method includes steps for evaluating the corresponding set of image frames to generate an intermediate result. The method includes steps for determining a composite result based on the intermediate results for each of the several target views.
-
8.
公开(公告)号:US20240338565A1
公开(公告)日:2024-10-10
申请号:US18746578
申请日:2024-06-18
申请人: Cape Analytics, Inc.
发明人: Ingo Kossyk , Suat Gedikli
IPC分类号: G06N3/08 , G06F18/21 , G06F18/22 , G06N3/04 , G06T7/00 , G06T7/73 , G06V10/764 , G06V10/82 , G06V20/10 , G06V20/17
CPC分类号: G06N3/08 , G06F18/217 , G06F18/22 , G06N3/04 , G06T7/74 , G06T7/97 , G06V10/764 , G06V10/82 , G06V20/17 , G06V20/176 , G06V20/188 , G06T2207/20084
摘要: Systems and methods are provided for automatically detecting a change in a feature. For example, a system includes a memory and a processor configured to analyze a change associated with a feature over a period of time using a plurality of remotely sensed time series images. Upon execution, the system would receive a plurality of remotely sensed time series images, extract a feature from the plurality of remotely sensed time series images, generate at least two time series feature vectors based on the feature, where the at least two time series feature vectors correspond to the feature at two different times, create a neural network model configured to predict a change in the feature at a specified time, and determine, using the neural network model, the change in the feature at a specified time based on a change between the at least two time series feature vectors.
-
公开(公告)号:US12113680B2
公开(公告)日:2024-10-08
申请号:US18091992
申请日:2022-12-30
发明人: Xiulian Peng , Vinod Prakash , Xiangyu Kong , Sriram Srinivasan , Yan Lu
IPC分类号: H04L47/283 , G06F18/21 , G06F18/214 , G06N20/00 , H04L41/14 , H04L41/16 , H04L43/087
CPC分类号: H04L41/16 , G06F18/214 , G06F18/217 , G06N20/00 , H04L41/145 , H04L43/087 , H04L47/283
摘要: Disclosed in some examples are methods, systems, and machine-readable mediums which determine jitter buffer delay by inputting jitter buffer and currently observed network status information to a machine learned model that is trained using a reinforcement learning (RL) method. The model maps these inputs to an action to compress, stretch, or hold the jitter buffer delay, which is used by a recipient computing device to optimize the jitter buffer delay. The model may be trained using a simulator that uses network traces of past real streaming sessions (e.g., communication sessions) of users. By training the model through reinforcement learning, the model learns to make better decisions through reinforcement in the form of reward signals that reflect the performance of each decision.
-
公开(公告)号:US12106078B2
公开(公告)日:2024-10-01
申请号:US16613301
申请日:2018-05-14
发明人: Cory Hughes , Timothy Estes , John Liu , Brandon Carl , Uday Kamath
IPC分类号: G06N20/00 , G06F8/36 , G06F18/20 , G06F18/21 , G06F18/2113 , G06F18/214 , G06N3/08 , G06N20/20 , G06V10/772 , G06V10/778
CPC分类号: G06F8/36 , G06F18/2113 , G06F18/214 , G06F18/217 , G06F18/285 , G06N3/08 , G06N20/00 , G06N20/20 , G06V10/772 , G06V10/7788 , G06V10/7796
摘要: In some aspects, systems and methods for rapidly building, managing, and sharing machine learning models are provided. Managing the lifecycle of machine learning models can include: receiving a set of unannotated data; requesting annotations of samples of the unannotated data to produce an annotated set of data; building a machine learning model based on the annotated set of data; deploying the machine learning model to a client system, wherein production annotations are generated; collecting the generated production annotations and generating a new machine learning model incorporating the production annotations; and selecting one of the machine learning model built based on the annotated set of data or the new machine learning model.
-
-
-
-
-
-
-
-
-