Abstract:
In an implementation, a printhead includes a nozzle and a fluid channel. A sensor plate is located within the fluid channel. An impedance measurement circuit is coupled to the sensor plate to measure impedance of fluid within the channel during a fluid movement event that moves fluid past the sensor plate.
Abstract:
An example provides a fluid ejection apparatus including a fluid feed slot along a length of a print head die of the fluid ejection apparatus to supply a fluid to a plurality of drop ejectors, control circuitry adjacent to at least one side of the fluid feed slot to control ejection of drops of fluid from the plurality of drop ejectors, and a single power supply connector at an end of the print head die to supply power to the control circuitry.
Abstract:
An example provides a fluid ejection apparatus including a fluid feed slot along a length of a print head die of the fluid ejection apparatus to supply a fluid to a plurality of drop ejectors, control circuitry adjacent to at least one side of the fluid feed slot to control ejection of drops of fluid from the plurality of drop ejectors, and a single power supply connector at an end of the print head die to supply power to the control circuitry.
Abstract:
In an implementation, a printhead includes a nozzle and a fluid channel. A sensor plate is located within the fluid channel. An impedance measurement circuit is coupled to the sensor plate to measure impedance of fluid within the channel during a fluid movement event that moves fluid past the sensor plate.
Abstract:
An inkjet printhead device, fluid ejection device and method thereof are disclosed. The fluid ejection device includes a fluid supply chamber to store fluid, an ejection chamber including a nozzle and a corresponding ejection member to selectively eject the fluid through the nozzle, and a channel to establish fluid communication between the fluid supply chamber and the ejection chamber. The fluid ejection device also includes a pressure sensor unit having a sensor plate to output a voltage value corresponding to a cross-sectional area of an amount of fluid in the at least ejection chamber.
Abstract:
A fluid ejection device is described. In an example, the fluid ejection device includes a substrate having a chamber formed thereon to contain a fluid. A thin-film stack is formed on the substrate having a resistor formed under the chamber. A transistor is formed in the substrate and coupled to the resistor. A circuit is formed in the substrate coupled to a gate of the transistor to selectively cause the transistor either to supply a firing current to the resistor for ejecting the fluid from the chamber or to dissipate power to warm the device.