Abstract:
A data transmission method includes receiving, by an optical line terminal (OLT) from an optical network unit (ONU), uplink burst data that includes a synchronization data block and a payload, where the synchronization data block includes first synchronization data, wherein the first synchronization data includes a first preamble and an ONU identifier, and a first bandwidth occupied by the first frequency distribution of the first synchronization data is narrower than a second bandwidth occupied by the second frequency distribution of the payload, and obtaining, by the OLT from the first synchronization data, the ONU identifier.
Abstract:
The present application discloses a data transmission method and apparatus. Multiple first data blocks of one service are received by a network interface card and the card allocates the received multiple first data blocks to a same data queue. When a tuner generates scheduling information for the service, the multiple first data blocks is sent to a virtual machine by using a resource in a resource pool of a NUMA node designated in the scheduling information; or when a tuner does not generate scheduling information, determining, according to a correspondence between the data queue and a resource pool of a NUMA node, a resource pool corresponding to the data queue in which the multiple first data blocks are located, and sending the multiple first data blocks to a virtual machine.
Abstract:
An apparatus for despreading in an optical domain configured to split a received optical signal into a first optical signal and a second optical signal, perform phase deflection on the second optical signal, output a third optical signal, perform phase deflection on the first optical signal and the third optical signal, output a fourth optical signal and a fifth optical signal to a balanced receiver, and superimpose the fourth optical signal and the fifth optical signal to generate a first electrical signal. A multiplication operation in conventional code division multiple access (CDMA) despreading is transferred from an electrical domain to an optical domain such that a chip rate can be easily raised to 20 gigahertz (GHz) or even to 25 GHz, a maximum rate of 100 gigabits per second (Gbps) can be provided in a single wavelength, and a user requirement for high bandwidth can be met.
Abstract:
An access network congestion control method, a base station device, and a policy and charging rules function network element are provided. The method includes the following steps: sending a congestion report to a policy and charging rules function network element (PCRF); receiving a radio frequency resource adjustment policy sent by the PCRF; and performing the radio frequency resource adjustment policy for the user equipment in the congested state and the user equipment in the over-served state. A corresponding base station device and PCRF are further disclosed. According to embodiments of the present application, when congestion occurs in a radio access network, radio frequency resources that are of user equipment in a congested state and that are of user equipment in an over-served state may be reallocated to ensure smooth communication.
Abstract:
Embodiments of the present disclosure relate to a signal transmission method The signal receiving method includes: receiving a first transmit signal, where the first transmit signal includes a first polarized optical signal and a second polarized optical signal that are perpendicular to each other, where the first polarized optical signal is loaded with first data, the first transmit signal is an uplink signal, and the first data is uplink data, or, the first transmit signal is a downlink signal, and the first data is downlink data; splitting the first transmit signal into a first signal and a second signal according to power; separately rotating a first polarized optical signal and a second polarized optical signal of the second signal by 90 degrees; and performing coherent mixing on the rotated second signal and the first signal to obtain the first data.