Abstract:
Methods and apparatus to control an architectural opening covering assembly are disclosed herein. An example system includes a first architectural opening covering assembly to identify a first position of a first covering as a first reference position in response to a first command to store a first speed at which the first assembly is to be driven. The first assembly is to operate a first motor to move the first covering at the first stored speed in response to a second command. The example system includes a second architectural opening covering assembly to store a second speed at which the second covering is to be driven in response to a third command. The second assembly is to operate a second motor at the second stored speed in response to a fourth command to move the second covering.
Abstract:
A process and system for manufacturing roller blinds is provided which includes structure for performing plural steps including a first step of helically winding slat fabric about a drum, thereby forming a slat product. A second step includes moving the slat product from the drum to a platform. A third step includes winding the slat product about a roller tube to form a roller blind. A fourth step includes moving the blind from the platform to a heat treating device.
Abstract:
A roller blind is disclosed which provides horizontal slats for directional shading, enabling the application of a screen fabric which allows a greater portion of visible light to pass therethrough. The disclosed slatted roller blind is free from the usage of ladder cords and is simplistic in design. The disclosed slatted roller blind maintains a compact formation of a roller shade when retracted and has greater resistance to skewing along the longitudinal axis of the roller while being retracted. Furthermore, the disclosed slatted roller blind design is capable of being utilized as an outdoor or indoor blind.
Abstract:
A retractable cover for architectural openings having collapsible vanes includes a support structure in the form of a sheet of material, monofilaments, tapes, ribbons, cords, or the like, supporting an upper edge of a plurality of vertically spaced, horizontally extending vanes with the lower edges of the vanes in most embodiments of the invention being connected to operating elements adapted to raise the lower edges of each vane toward the upper edges to define openings or gaps between the vanes through which vision and light can pass in an open condition of the covering. Variations of the covering do not require movement of a lower edge of a vane relative to an upper edge but simply movement of some vanes relative to other vanes. The vanes can be made of materials having different flexibilities and where more rigid materials are used, creased fold lines can be established for desired operability.
Abstract:
A single-track stacking panel covering for an architectural opening has a headrail for mounting the covering above and in front of the opening, such as a window or door. The headrail has a single track. Suspended from the headrail and translatable therealong are panels oriented at a small angle relative to the headrail. When the covering is open, the panels form an overlappingly stacked array at one end of the headrail.
Abstract:
A retractable covering for an architectural opening includes a headrail in which a control system is mounted and a fabric suspended from the headrail. The fabric is mounted to be moved laterally between a rolled up retracted position and an extended position across the architectural opening. At least one roller about which the fabric can be wrapped is mounted at an end of the headrail for rotation about a vertical axis, and the system includes a flexible control element that is substantially horizontally disposed for moving the covering between extended and retracted positions.
Abstract:
A retractable cellular shade is illustrated in various embodiments to consist of a support structure that could assume numerous forms including cellular material, flexible sheets of material, tapes or ribbons, or flexible monofilaments or similar cords of natural or synthetic fibers with the support structure supporting a plurality of vanes or slats in various configurations and orientations. The movement of the vanes or slats is totally dependent upon movement of the support structure. The fabric so formed can be incorporated into a covering for architectural openings with the covering including a headrail with means for gathering the fabric material within the headrail.
Abstract:
An apparatus and associated method for manufacturing a window covering for an architectural opening. The apparatus includes a support structure handling assembly, an operating element handling assembly, and a vane handling assembly. The handling assemblies process the respective materials to an assembly station to attach one portion of a vane to the operating elements, and another portion of the vane to the support structure, allowing movement of one portion of the vane relative to other portion of the vane.
Abstract:
An apparatus and associated method for manufacturing a window covering for an architectural opening. The apparatus includes a support structure handling assembly, an operating element handling assembly, and a vane handling assembly. The handling assemblies process the respective materials to an assembly station to attach one portion of a vane to the operating elements, and another portion of the vane to the support structure, allowing movement of one portion of the vane relative to other portion of the vane.
Abstract:
A covering for an architectural opening including: a first fabric material including an inner surface, an outer surface, a top end, and a bottom end; a second fabric material separate from the first fabric material including an inner surface, an outer surface, a top end, and a bottom end; and a first stiffener including an inner surface and an outer surface, wherein said bottom end of said first fabric material overlaps and is adhered to the top end of said second fabric material and said inner surface of said stiffener is directly adhered to one of the bottom end of the first fabric material or the top end of the second fabric material. The bottom end of the first fabric material in a configuration is folded over to define a first folded piece of fabric corresponding to a location where the first stiffener is adhered.