摘要:
In a method of fabricating a liquid crystal display, an insulating layer for storage capacitors is reduced in thickness to increase the storage capacity while maintaining the aperture ratio in a stable manner. A thin film transistor array panel for the liquid crystal display includes an insulating substrate, and a gate line assembly and a storage capacitor line assembly formed on the insulating substrate. The gate line assembly has gate lines and gate electrodes. A gate insulating layer covers the gate line assembly and the storage capacitor line assembly. A semiconductor pattern is formed on the gate insulating layer. A data line assembly and storage capacitor conductive patterns are formed on the gate insulating layer overlaid with the semiconductor pattern. The data line assembly has data lines, source electrodes and drain electrodes. The storage capacitor conductive patterns are partially overlapped with the storage capacitor line assembly to thereby form first storage capacitors. A passivation layer covers the data line assembly, the storage capacitor conductive patterns and the semiconductor pattern. First and second contact holes are formed at the passivation layer while exposing the drain electrodes and the storage capacitor conductive patterns. Pixel electrodes are formed on the passivation layer while being connected to the drain electrodes and the storage capacitor conductive patterns through the first and the second contact holes. The pixel electrodes form second storage capacitors in association with parts of the storage capacitor line assembly.
摘要:
In a method of fabricating a liquid crystal display, an insulating layer for storage capacitors is reduced in thickness to increase the storage capacity while maintaining the aperture ratio in a stable manner. A thin film transistor array panel for the liquid crystal display includes an insulating substrate, and a gate line assembly and a storage capacitor line assembly formed on the insulating substrate. The gate line assembly has gate lines and gate electrodes. A gate insulating layer covers the gate line assembly and the storage capacitor line assembly. A semiconductor pattern is formed on the gate insulating layer. A data line assembly and storage capacitor conductive patterns are formed on the gate insulating layer overlaid with the semiconductor pattern. The data line assembly has data lines, source electrodes and drain electrodes. The storage capacitor conductive patterns are partially overlapped with the storage capacitor line assembly to thereby form first storage capacitors. A passivation layer covers the data line assembly, the storage capacitor conductive patterns and the semiconductor pattern. First and second contact holes are formed at the passivation layer while exposing the drain electrodes and the storage capacitor conductive patterns. Pixel electrodes are formed on the passivation layer while being connected to the drain electrodes and the storage capacitor conductive patterns through the first and the second contact holes. The pixel electrodes form second storage capacitors in association with parts of the storage capacitor line assembly.
摘要:
In a method of fabricating a liquid crystal display, an insulating layer for storage capacitors is reduced in thickness to increase the storage capacity while maintaining the aperture ratio in a stable manner. A thin film transistor array panel for the liquid crystal display includes an insulating substrate, and a gate line assembly and a storage capacitor line assembly formed on the insulating substrate. The gate line assembly has gate lines and gate electrodes. A gate insulating layer covers the gate line assembly and the storage capacitor line assembly. A semiconductor pattern is formed on the gate insulating layer. A data line assembly and storage capacitor conductive patterns are formed on the gate insulating layer overlaid with the semiconductor pattern. The data line assembly has data lines, source electrodes and drain electrodes. The storage capacitor conductive patterns are partially overlapped with the storage capacitor line assembly to thereby form first storage capacitors. A passivation layer covers the data line assembly, the storage capacitor conductive patterns and the semiconductor pattern. First and second contact holes are formed at the passivation layer while exposing the drain electrodes and the storage capacitor conductive patterns. Pixel electrodes are formed on the passivation layer while being connected to the drain electrodes and the storage capacitor conductive patterns through the first and the second contact holes. The pixel electrodes form second storage capacitors in association with parts of the storage capacitor line assembly.
摘要:
Disclosed is a liquid crystal display comprising a liquid crystal cell including a pair of transparent substrates, with orientation layers deposited on inner surfaces thereof, and a liquid crystal layer of liquid crystal material injected between the substrates; biaxial compensation films provided on outer surfaces of the liquid crystal cell, the biaxial compensation films including an optical dielectric material layer; and polarization plates provided on outer surfaces of the biaxial compensation films, wherein if “d” is set as a cell gap of the liquid crystal cell, “RLC” is set as a phase retardation value of the liquid crystal layer, an axis perpendicular to planes made by the substrates is set as a z-axis, x-axis and y-axis are formed on a planar surface of the substrates, and refractive indices of molecules comprising the biaxial compensation films in the x, y and z directions are denoted by nx, ny and nz, retardation values (ny−nx)*d and (nz−nx)*d of the biaxial compensation films being respectively within ranges of −30±5 nm and −RLC/4±15 nm.
摘要:
In a method of fabricating a liquid crystal display, an insulating layer for storage capacitors is reduced in thickness to increase the storage capacity while maintaining the aperture ratio in a stable manner. A thin film transistor array panel for the liquid crystal display includes an insulating substrate, and a gate line assembly and a storage capacitor line assembly formed on the insulating substrate. The gate line assembly has gate lines and gate electrodes. A gate insulating layer covers the gate line assembly and the storage capacitor line assembly. A semiconductor pattern is formed on the gate insulating layer. A data line assembly and storage capacitor conductive patterns are formed on the gate insulating layer overlaid with the semiconductor pattern. The data line assembly has data lines, source electrodes and drain electrodes. The storage capacitor conductive patterns are partially overlapped with the storage capacitor line assembly to thereby form first storage capacitors. A passivation layer covers the data line assembly, the storage capacitor conductive patterns and the semiconductor pattern. First and second contact holes are formed at the passivation layer while exposing the drain electrodes and the storage capacitor conductive patterns. Pixel electrodes are formed on the passivation layer while being connected to the drain electrodes and the storage capacitor conductive patterns through the first and the second contact holes. The pixel electrodes form second storage capacitors in association with parts of the storage capacitor line assembly.
摘要:
A liquid crystal display in which liquid crystal molecules of the liquid crystal display have a uniformly bent alignment. The liquid crystal display includes a first substrate including wiring that intersects to define unit pixels, and a first electrode provided in each of the unit pixels; a second substrate opposing the first substrate and including a second electrode formed over an entire area of the second substrate, the first and second electrodes forming an electric field when a voltage is applied to the first and second electrodes; a liquid crystal layer formed by injecting liquid crystal material between the first and second substrates, the liquid crystal material having liquid crystal molecules that are horizontally oriented in one direction and increasingly bent as approaching an imaginary center plane, wherein the center plane is parallel and equidistant to the first and second substrates, when the electric field is formed between the first and second substrates, such that the liquid crystal molecules are symmetrical about the center plane; and a buffer electrode provided under the first electrode and extending past an edge of the first electrode at an area where orientation of the liquid crystal molecules begins in the unit pixel.
摘要:
In a method of fabricating a liquid crystal display, an insulating layer for storage capacitors is reduced in thickness to increase the storage capacity while maintaining the aperture ratio in a stable manner. A thin film transistor array panel for the liquid crystal display includes an insulating substrate, and a gate line assembly and a storage capacitor line assembly formed on the insulating substrate. The gate line assembly has gate lines and gate electrodes. A gate insulating layer covers the gate line assembly and the storage capacitor line assembly. A semiconductor pattern is formed on the gate insulating layer. A data line assembly and storage capacitor conductive patterns are formed on the gate insulating layer overlaid with the semiconductor pattern. The data line assembly has data lines, source electrodes and drain electrodes. The storage capacitor conductive patterns are partially overlapped with the storage capacitor line assembly to thereby form first storage capacitors. A passivation layer covers the data line assembly, the storage capacitor conductive patterns and the semiconductor pattern. First and second contact holes are formed at the passivation layer while exposing the drain electrodes and the storage capacitor conductive patterns. Pixel electrodes are formed on the passivation layer while being connected to the drain electrodes and the storage capacitor conductive patterns through the first and the second contact holes. The pixel electrodes form second storage capacitors in association with parts of the storage capacitor line assembly.
摘要:
A liquid crystal display includes an LCD panel, a source driver outputting image signals to the LCD panel, a gate driver sequentially outputting scanning signals to the LCD panel. At the same time of power on, high-level bias voltages are applied to a common electrode line of the LCD panel, and simultaneously, driving of the source driver and the gate driver are stopped. After a specific time has passed, common electrode voltages are applied to the common electrode lines of the liquid crystal display instead of the high-level bias voltages to drive the source driver and the gate driver.
摘要:
Disclosed is a liquid crystal display comprising a liquid crystal cell including a pair of transparent substrates, with orientation layers deposited on inner surfaces thereof, and a liquid crystal layer of liquid crystal material injected between the substrates; biaxial compensation films provided on outer surfaces of the liquid crystal cell, the biaxial compensation films including an optical dielectric material layer; and polarization plates provided on outer surfaces of the biaxial compensation films, wherein if “d” is set as a cell gap of the liquid crystal cell, “RLC” is set as a phase retardation value of the liquid crystal layer, an axis perpendicular to planes made by the substrates is set as a z-axis, x-axis and y-axis are formed on a planar surface of the substrates, and refractive indices of molecules comprising the biaxial compensation films in the x, y and z directions are denoted by nx, ny and nz, retardation values (ny-nx)*d and (nz-nx)*d of the biaxial compensation films being respectively within ranges of −30±5 nm and −RLC/4±15 nm.
摘要:
In a method of fabricating a liquid crystal display, an insulating layer for storage capacitors is reduced in thickness to increase the storage capacity while maintaining the aperture ratio in a stable manner. A thin film transistor array panel for the liquid crystal display includes an insulating substrate, and a gate line assembly and a storage capacitor line assembly formed on the insulating substrate. The gate line assembly has gate lines and gate electrodes. A gate insulating layer covers the gate line assembly and the storage capacitor line assembly. A semiconductor pattern is formed on the gate insulating layer. A data line assembly and storage capacitor conductive patterns are formed on the gate insulating layer overlaid with the semiconductor pattern. The data line assembly has data lines, source electrodes and drain electrodes. The storage capacitor conductive patterns are partially overlapped with the storage capacitor line assembly to thereby form first storage capacitors. A passivation layer covers the data line assembly, the storage capacitor conductive patterns and the semiconductor pattern. First and second contact holes are formed at the passivation layer while exposing the drain electrodes and the storage capacitor conductive patterns. Pixel electrodes are formed on the passivation layer while being connected to the drain electrodes and the storage capacitor conductive patterns through the first and the second contact holes. The pixel electrodes form second storage capacitors in association with parts of the storage capacitor line assembly.