Abstract:
An apparatus may include a memory to store a first radio signal strength indicator (RSSI) data set comprising first data entries for RSSI detected from a multiplicity of transmission sources by a first wireless device of a first device type, and to store a second RSSI data set comprising second data entries for RSSI detected from the multiplicity of transmission sources by a second wireless device of a second device type; and a cross-device radio calibration engine to receive the first RSSI data set and second RSSI data set and generate a cross-calibrated RSSI function comprising a function that reduces differences between the first RSSI data set and the second RSSI data set. Other embodiments are disclosed and claimed.
Abstract:
A method of generating wireless signal information includes receiving relative movement data generated by sensors and wireless signal data generated by a wireless signal module at a computing system, the sensors and module for detecting wireless signals located in a portable electronic device (PED). The method further includes generating landmark information at a landmark detection module based on the relative movement data, the sensor data and the wireless signal data. The method further includes generating a plurality of Simultaneous Localization and Mapping (SLAM) estimate locations based on the landmark information and the relative movement data at a SLAM optimization engine. The method further includes assembling a first database of locations and corresponding wireless signal strength and access points. The method further includes generating additional information concerning locations and wireless signal information based on the first database.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of estimating an orientation of a mobile device. For example, an apparatus may include an orientation estimator to receive an indication of first and second consecutive steps of a user carrying a mobile device, to determine an angular rotation of an orientation parameter between the first and second steps, and to determine a value of the orientation parameter based on a comparison between the angular rotation and at least one predefined angular rotation threshold.