Abstract:
Techniques are provided to support roaming of wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam within and across mobility sub-domains. When a wireless device roams from one access switch to another access switch, a tunneling endpoint apparatus in the wireless device's home mobility sub-domain is configured to serve as the point of presence for the roamed wireless device. Traffic for the roamed wireless device is tunneled from the access switch where the wireless device has roamed (where it is currently attached) to the tunneling endpoint apparatus. When the wireless device roams across mobility sub-domains, then traffic is tunneled from the access switch where the wireless device is currently attached to the tunneling endpoint apparatus in that mobility sub-domain (called a “foreign” mobility sub-domain) to the tunneling endpoint apparatus in the wireless device's home mobility sub-domain.
Abstract:
A system and method for a hierarchical distributed control architecture to support roaming wireless client devices. Access switches serve one or more Internet Protocol (IP) subnets that include plural IP addresses. The access switches are arranged in switch peer groups and store information about other access switches in that switch peer group and about locations of wireless client devices that are associated with any access switch in the switch peer group. The access switches are further grouped into a corresponding mobility sub-domain each including plural switch peer groups. Plural controller devices control access switches in a corresponding mobility sub-domain. Each controller device stores information about the access switches and about locations of wireless client devices within its mobility sub-domain. A central controller device communicates with the controller devices for the respective mobility sub-domains. The central controller device stores information about locations of wireless client devices in the mobility sub-domains.
Abstract:
In one example embodiment, a system and method are shown that includes calculating a first SPF tree for a first device, the first SPF tree including a root node and a first child node, the first device being the root node of the first SPF tree. Additionally, the system and method may include calculating a second SPF tree for a second device that is a neighbor of the first device, the second SPF tree including a root node and a first child node, the second device being the root node of the second SPF tree. Further, the system and method may include building a set of interested nodes including the second device, if the first child node if the first SPF tree and the first child node of the second SPF tree are distinct.
Abstract:
Techniques are provided to facilitate monitoring of utility application traffic streams. At a network device that routes utility application traffic for utility devices, control information is received, where the control information is configured to cause the network device to monitor utility application traffic that passes through the network device. The network device monitors a header inserted into utility application traffic messages based on the control information.
Abstract:
In one embodiment, a method for processing encrypted wireless station data at a network device includes receiving from an access point, one or more frames comprising wireless station data fragmented into a plurality of encrypted protocol data units. The frames are configured to identify the encrypted protocol units associated with the wireless station data. The method further includes decrypting the encrypted protocol data units and forwarding the wireless station data. An apparatus for processing encrypted wireless station data, a method for transmitting encrypted multicast data for a wireless client, and a method for processing encrypted wireless station data at an access point are also disclosed.
Abstract:
In one embodiment, providing multi-layer address security incorporating Layer 2 Media Access Control (MAC) addresses and corresponding Layer 3 Internet Protocol (IP) addresses for host machines on a routed access network is provided.
Abstract:
In one embodiment, detecting a host device on a port of a forwarder switch in a network, detecting a movement of the host device from a first forwarder switch to a second forwarder switch, and multicast broadcasting an updated device information for the host device to a convergence group switches and a proximity group switches, where the convergence group switches includes switches in the network that are not configured as forwarder switches, and the proximity group switches include forwarder switches grouped together based on radio proximity is provided.
Abstract:
Method and system for providing dynamic network data traffic monitoring including monitoring a data network, detecting a change in the data network, initiating a span session based on the detected change in the data network, and dynamically modifying network configuration based on the detected change in the data network is disclosed.
Abstract:
Method and system for providing dynamic configuration of link redundancy in data network based on detection of dynamic changes in the network topology including the steps of detecting data network topology, determining a number of data paths from a node in the data network topology to each of a respective pair of peer nodes coupled to the node by a corresponding interface, determining a data path in the data network topology between the peer nodes, calculating a set of nodes reachable via each interface coupled to the node and the respective peer node in the data network topology, and comparing the set of calculated nodes is provided.
Abstract:
Techniques are provided for adaptive routing of authentication packets in a network, such as a wireless mesh network. At an authenticated device in the network, an authentication packet is received over the network from a device that is seeking authentication. The authentication packet is encapsulated for transmission in Layer 3 packets over an Internet Protocol (IP) tunnel to an authenticator device associated in the network. Similarly, for an authentication packet encapsulated in Layer 3 packets from the authenticator device over the IP tunnel, the authentication packet is decapsulated from the Layer 3 packets and transmitted over the network to the device seeking authentication.