Abstract:
The present invention relates to an audio recording electronic book apparatus featuring a recording function to take an audio note, comprising a display module for displaying the contents of an electronic book; a memory unit for storing at least one electronic book file; a micro process unit for reading an electronic book file and displaying it on the display module; a recording/broadcasting module for inputting an audio note after startup and storing in the memory unit as an audio data file; and a correspondence table for recording the linkage relationship related to the audio data file and the electronic book file.
Abstract:
A pixel structure for a display device is provided. The pixel structure utilizes light entering from the ambient environment of the display as a light source. The pixel structure comprises a first substrate, a light obstructing layer, an active element and an adjustable light shielding layer. The light obstructing layer is disposed on the first substrate and has a transparent area and an opaque area. The active element is disposed on the opaque area of the light obstructing layer and has a first state and a second state. The adjustable light shielding layer is disposed on the light obstructing layer and the active element. When the active element is in the first state, the adjustable light shielding layer is adapted to cover the transparent area to shield the light from emitting out from the first substrate. When the active element is in the second state, the adjustable light shielding layer is driven to uncover the transparent area so that the light is adapted to emit out from the transparent area and the first substrate.
Abstract:
A method for fabricating flexible display device includes the following steps. Firstly, a rigid substrate is provided. Secondly, a sacrificing layer is formed on the rigid substrate. Thirdly, an element layer is formed on the sacrificing layer. Fourthly, the sacrificing layer is etched by a gas and then gasified, so that the element layer is separated from the rigid substrate. Then, the element layer is adhered to a flexible substrate. Because products generated by the sacrificing layer reacting with the gas are gases, the products can be removed by air exhaust for simplifying process. Thus, the cost of the process of fabricating flexible display device can be decreased.
Abstract:
An e-book under an external light having an intensity is provided. The e-book includes a memory module storing data; an input/output interface electrically connected to the memory module, inputting the data to the memory module, and outputting the data from the memory module; an e-paper module electrically connected to the memory module, and displaying the data; a power device electrically connected to the e-paper module and the memory module, and providing a power output; and a photosensor electrically connected to the power device, having a threshold value, and sensing the intensity of the external light, wherein when the sensed intensity is lower than the threshold value, the power device reduces the power output.
Abstract:
An electromagnetic touch displayer is provided. The electromagnetic touch displayer may work with an electromagnetic signal transmission apparatus. The electromagnetic touch displayer comprises a plurality of sense antennas. When the electromagnetic touch displayer enters into a sleep mode, a part of the sense antennas will keep in the work mode. If the user wants to wake the electromagnetic touch displayer up to make it into the work mode, he will make the electromagnetic signal transmission apparatus transmit an electromagnetic signal. Then, the electromagnetic touch displayer receives the electromagnetic signal via the sense antennas which are still working, and enters into the work mode according to the electromagnetic signal.
Abstract:
An electro-phoretic display device includes a first substrate, an active elements array, a driving circuit, a conductive flexible board, an electro-phoretic layer, a second substrate and a sealant layer. The first substrate has a first surface defining a display area and a circuit area, and a second surface. The active elements array is disposed within the display area and the driving circuit is disposed within the circuit area and electrically connected to the active elements array. The conductive flexible board is partially disposed at the first substrate and electrically connected to the driving circuit. The electro-phoretic layer and the second substrate are sequentially disposed on the active elements array and the driving circuit. The sealant layer is interposed between the second substrate and the conductive flexible board to seal the electro-phoretic layer between the first substrate and the second substrate. A fabricating method of electro-phoretic display device is also disclosed.
Abstract:
A display device includes a first substrate, a second substrate, a partition element disposed between the first and the second substrates, a dielectric liquid and a plurality of dielectrophoretic particles. The first substrate includes a base having surface and an electrode layer being disposed on the surface and having at least one electrode. The partition element forms at least one accommodating room between the first and the second substrates. The electrode is adapted to forming an electric field in the accommodating room. A plurality of sections of the electrode parallel to the surface are gradually reduced in a direction towards the second substrate. The dielectric liquid is disposed in the accommodating room and has a first dielectric constant. The dielectrophoretic particles are dispersed in the dielectric liquid. Each of the dielectrophoretic particles has a color and a second dielectric constant different from the first dielectric constant.
Abstract:
A manufacturing method for flexible display apparatus includes following steps. A carrier frame is formed on a rigid substrate. A flexible substrate is formed on the carrier substrate, wherein a border of the flexible substrate is supported by the carrier frame. A display unit is formed on the flexible substrate. At least a portion of the flexible substrate is separated from the carrier frame. In the manufacturing method, the flexible substrate and the carrier frame can be easily separated.
Abstract:
A method for fabricating flexible display device includes the following steps. Firstly, a rigid substrate is provided. Secondly, a sacrificing layer is formed on the rigid substrate. Thirdly, an element layer is formed on the sacrificing layer. Fourthly, the sacrificing layer is etched by a gas and then gasified, so that the element layer is separated from the rigid substrate. Then, the element layer is adhered to a flexible substrate. Because products generated by the sacrificing layer reacting with the gas are gases, the products can be removed by air exhaust for simplifying process. Thus, the cost of the process of fabricating flexible display device can be decreased.
Abstract:
A method for manufacturing a color electrophoretic display device includes the following steps. First, a substrate having a displaying region and a circuit region around the displaying region is provided. Next, a driving array is formed in the displaying region. Subsequently, an electrophoretic display layer is formed on the driving array. Afterwards, a thermal transfer process is performed so that a color filter layer is formed on the electrophoretic display layer. The method can increase the production eligibility rate of the color electrophoretic display device, thereby improving the display quality of the color electrophoretic display device.