摘要:
A transfer unit for use in an image forming apparatus includes a transfer belt, and a counter member. The transfer belt, having a given circumferential length, receives an un-fixed image, formed of an image developer, from an image carrier at a first nip, which is defined between the transfer belt and the image carrier. The counter member faces the transfer belt to form a second nip with the transfer belt. The un-fixed image is transferred from the transfer belt to a recording medium passing through the second nip. A slack portion is generated in the transfer belt, when a front edge of the recording medium passes through the second nip. The slack portion of the transfer belt being generated in a first portion of the transfer belt returning from the second nip to the first nip.
摘要:
An image forming apparatus is capable of specifying the type of an occurring abnormality to a certain extent while avoiding the increasingly complicated control that is caused when a plurality of abnormalities is detected individually according to the presence of their respective causes. A normal group data set, which is a collection of normal value combinations relating to grouped information constituted by a plurality of information of differing types, is stored in RAM or ROM serving as information storage means of a control unit. At least two or more sets of grouped information, comprising first grouped information constituted by a plurality of different types of information, and second grouped information constituted by a plurality of information in a different combination to that of the first grouped information, are obtained from the RAM, the ROM, various sensors, and an operation display unit. A CPU serving as determining means determines a Mahalanobis distance for each set of grouped information on the basis of the normal group data set and the obtained results of each set of grouped information, and uses this Mahalanobis distance to determine the presence of an abnormality according to categories.
摘要:
A copier capable of binding copy papers at their center or their edge as desired. A bookbinding device is operatively connected to a paper outlet of the copier. To bind the papers at their center, a folding mechanism of the bookbinding device is activated first in order to form a crease along the center of each copy paper. Then, a binding mechanism of the bookbinding device is activated to sequentially stack the papers in an upwardly convex form and such that the creases face upward in alignment and, then, stitch the papers together along the aligned creases by means of a staple or the like. The bound papers are discharged to a stacking mechanism of the bookbinding device in a developed position so as to be stacked there while being folded double in the creases. When it is desired to duplicate documents on papers which are equal to or double the size of the documents and bind the copies at the center, a positional relationship between the documents and the papers is set up by a unique method.
摘要:
A fixing device includes a nip former including a first face to form a fixing nip, a second face being disposed upstream from the first face in a rotation direction of a rotator and defining a predetermined angle relative to the first face, and a bent portion coupling the first face to the second face. An inner circumferential surface of the rotator slides over the first face. A lateral end accumulation portion and a center accumulation portion are defined by the second face and the bent portion of the nip former and the inner circumferential surface of the rotator. The lateral end accumulation portion is accumulated with a lubricant in a first amount. The center accumulation portion is disposed inboard from the lateral end accumulation portion in an axial direction of the rotator and accumulated with the lubricant in a second amount greater than the first amount.
摘要:
A fixing device includes a belt, a pressure rotator disposed opposite the belt, and a nip formation unit that forms a fixing nip between the belt and the pressure rotator. The nip formation unit includes a guide face disposed upstream from the fixing nip in a rotation direction of the belt and contoured to separate from the pressure rotator in a direction opposite the rotation direction of the belt. The guide face is adhered with a lubricant moved from an inner circumferential surface of the belt. The belt rotates in the rotation direction when an outer circumferential surface of the belt has a temperature lower than a fixing temperature at which the belt fixes a toner image on a recording medium. The belt rotating in the rotation direction brings the lubricant adhered to the guide face into contact with the belt.
摘要:
A fixing device includes a flexible endless belt formed into a loop and having an inner circumferential surface, a heater to heat the endless belt, and a nip formation assembly disposed inside the loop formed by the endless belt. The nip formation assembly includes a pressure pad made of heat-resistant resin including a hollow filler, and a supplementary thermal conductor having a belt sliding-contact face over which the inner circumferential surface of the endless belt slides. The supplementary thermal conductor is interposed between the endless belt and the pressure pad to conduct heat from the heater in an axial direction of the endless belt. The fixing device further includes a pressure rotator to press against the nip formation assembly via the endless belt to form a fixing nip between the endless belt and the pressure rotator, through which a recording medium bearing a toner image is conveyed.
摘要:
A fixing device includes an endless belt being applied with a lubricant on an inner circumferential surface of the endless belt. A pressure rotator presses against a nip formation pad via the endless belt to form a fixing nip between the endless belt and the pressure rotator. A radiant heater heats the endless belt. At least one contact heater heats at least one lateral end of the endless belt in an axial direction of the endless belt. At least one temperature detector detects a temperature of the endless belt. A controller controls the at least one contact heater to generate heat, controls the endless belt to rotate, and controls the radiant heater to generate heat sequentially based on the temperature of the endless belt that is detected by the at least one temperature detector.
摘要:
A fixing device includes a fixing rotator and at least one heater, disposed opposite an inner circumferential surface of the fixing rotator, to heat the fixing rotator. The at least one heater includes a heat generator to generate heat. A lateral end heater is disposed at least at one lateral end of a nip formation pad in a longitudinal direction of the nip formation pad. The lateral end heater heats at least one lateral end of the fixing rotator in an axial direction of the fixing rotator. The lateral end heater includes a base, a resistor, mounted on the base, to generate heat, and an electrode coupled to the resistor to supply power to the resistor. The electrode is disposed outboard from the heat generator of the at least one heater in the axial direction of the fixing rotator.
摘要:
A fixing device includes an endless belt, a first radiant heater including a first heat generator to heat the endless belt, and a second radiant heater including a second heat generator, disposed outboard from the first heat generator in an axial direction of the endless belt, to heat the endless belt. A nip formation pad includes a nip-side face disposed opposite the endless belt. A contact heater heats at least one lateral end of the endless belt in the axial direction of the endless belt. The contact heater includes a nip-side face disposed opposite the endless belt. A thermal conduction aid covers the nip-side face of the nip formation pad and the nip-side face of the contact heater and conducts heat applied to the endless belt in the axial direction of the endless belt.
摘要:
A fixing device includes a primary heater, a secondary heater, and a tertiary heater to heat a primary heating span, a secondary heating span, and a tertiary heating span of a fixing rotator, respectively. A primary temperature detector and a secondary temperature detector detect a temperature of the fixing rotator. A tertiary temperature detector detects a temperature of a pressure rotator. A controller selectively performs a primary control mode to de-energize the tertiary heater and a secondary control mode to connect the secondary heater and the tertiary heater in series to energize the primary heater, the secondary heater, and the tertiary heater. The controller energizes the secondary heater and the tertiary heater in the secondary control mode based on the temperature of the fixing rotator and the pressure rotator detected by the secondary temperature detector and the tertiary temperature detector, respectively.