摘要:
A notch filter system, where multiple filter passes of a light signal may be effected for removing a target spectral component from the light signal, is provided. Advantageously, the notch filter system may be tunable. A cascade notch filter system is provided which includes multiple notch filters arranged in a cascade, each of the filters having spectral filtering characteristics and being disposed in the path of the light signal at an appropriate filter angle so that the target spectral component is filtered out of the light signal as the light signal passes therethrough. A multipass notch filter system is provided which includes a notch filter having spectral filtering characteristics, and an optical assembly for directing the light signal for multiple filter passes through the filter at an appropriate angle, so that the target spectral component is filtered out of the light signal as the light signal passes through the filter.
摘要:
In a diagnostic imaging system (10), a monitor (50) monitors periodic biological cycles of the subject (14). A trigger point detector (60) detects a time (t1, t2, . . . ,tn) of a common, reoccurring reference point (R1, R2, . . . ,Rn) in each periodic cycle of the subject (14). A sequence selector (62) selects a sequence (64) of nominal sampling segments (Si, S2, . . . ,Sn). An adjustor (70) adjusts duration of each nominal sampling segment (Si, S2, . . . ,Sn) to coincide with the times of detected reference points (R1, R2, . . . ,Rn). A scaling processor (72) scales each adjusted segment based on a difference in duration between the corresponding nominal (Si, S2, . . . Sn) and adjusted sampling segments (S′i, S′2, . . . ,S′n).
摘要:
A system reverses degraded energy resolution of semiconductor radiation detection elements (44) which are used in a radiation detector assembly. A means (38) identifies semiconductor elements which exhibit degraded energy resolution as compared to an initial level of energy resolution after application of the forward bias. A means (40) restores the degraded semiconductor elements to the initial level of energy resolution by applying the reverse bias. A heater (74) accelerates the restoration process by supplying an elevated ambient temperature. A screening means (48) screens new semiconductor elements to identify the elements which are susceptible to degradation. A forward bias is applied by a forward bias means (50) to induce the degradation. A heater (52) increases an ambient temperature to accelerate the performance degradation in the new semiconductor elements. The identified degradable elements are treated with a reverse bias prior to installation in the detector.
摘要:
A media edge guide assembly for use in an imaging apparatus having a media supply source includes a first edge guide portion and a second edge guide portion. The first edge guide portion and the second edge guide portion are arranged to have an axis of rotation passing through the first edge guide portion and the second edge guide portion. The first edge guide portion and the second edge guide portion are laterally interconnected to facilitate movement as a unit in a lateral direction along the axis of rotation, and the first edge guide portion and the second edge guide portion are configured to be rotationally disconnected with respect to the axis of rotation to permit the first edge guide portion to rotate around the axis of rotation independent of the second edge guide portion.
摘要:
A subject (10) is disposed adjacent a linear detector array (18) of a nuclear camera. The subject (10) is injected with a radioactive isotope (14) and y-ray emissions indicative of nuclear decay are detected at the detector array (18) as the detector array rotates about an axis of rotation to collect data over a circular field of view. Detectors farther from the axis rotation are sampled at a higher sampling rate such that the are sampled after a generally constant arc of rotation to correct for angular aliasing. The detector array (18) rotates about the axis of rotation in a 1/sin &THgr; pattern with angular offset of the detector array from a longitudinal axis of the subject. This corrects for otherwise uneven sampling. A reconstruction processor (84) reconstructs the identifications of the y-ray receiving detectors, or other indicators of event detection location, and the digital peak values to generate a spherical image representation.
摘要翻译:被摄体(10)设置在核相机的线性检测器阵列(18)附近。 被检体(10)注入放射性同位素(14),并且当检测器阵列围绕旋转轴旋转时,在检测器阵列(18)处检测到表示核衰变的y射线发射,以在圆周的圆周上收集数据 视图。 以更高的采样速率对离轴旋转更远的探测器进行采样,以便在大体上恒定的旋转弧线之后对其进行采样,以校正角度混叠。 检测器阵列(18)以1 / sin THETA图案的旋转轴线旋转,其中检测器阵列的角度偏移与被检体的纵轴成角度偏移。 这取决于不均匀采样。 重建处理器(84)重建y射线接收检测器或事件检测位置的其他指示符的标识,以及数字峰值以产生球形图像表示。
摘要:
A method for reconstructing an image representation of a subject from data sets collected using a medical diagnostic imaging apparatus is provided. The method includes defining operations which are performed in reconstructing desired types of image representations. The operations are applicable to data sets having particular formats. Data sets having particular formats are identified, and operations are selected from the defined operations based upon the particular format of the identified data sets. When a detected load on available image processing equipment is below a desired level, then selected operations are automatically performed on the identified data sets.
摘要:
A method of ML-EM image reconstruction is provided for use in connection with a diagnostic imaging apparatus (10) that generates projection data. The method includes collecting projection data, including measured emission projection data and measured transmission projection data. Optionally, the measured transmission projection data is truncated. An initial emission map and attenuation map are assumed. The emission map and the attenuation map are iteratively updated. With each iteration, the emission map is recalculated by taking a previous emission map and adjusting it based upon: (i) the measured emission projection data; (ii) a reprojection of the previous emission map which is carried out with a multi-dimensional projection model; and, (iii) a reprojection of the attenuation map. As well, with each iteration, the attenuation map is recalculated by taking a previous attenuation map and adjusting it based upon: (i) the measured emission projection data; (ii) a reprojection of the previous emission map which is carried out with the multi-dimensional projection model; and (iii) measured transmission projection data.
摘要:
Radiation from a subject (18) which is received by a scintillation crystal (12) interacts with the scintillation crystal to produce a burst of scintillation light photons. The depth distribution at which the interaction occurs varies in accordance with the energy of the received radiation. Low-energy radiation tends to interact at a shallow depth relative to a front face of the scintillation crystal and radiation with a high energy tends to interact relatively deeply into the crystal. A moment processor (20) processes electronic information from photomultiplier tubes (14) which view the scintillation crystal to generate zero-th moment or energy information, first moment or coordinate information and second moment or depth information. The event information is filtered (34, 62, 66, 82) in accordance with depth (26), e.g., sorted into acceptable/unacceptable information, information corresponding to each of two or more energies of radiation, and the like.
摘要:
A PET/CT imaging system is provided. The imaging system includes a PET detection system having a plurality of detector rings and an axial gap between at least two adjacent detector rings within the plurality of detector rings. The imaging system includes a CT system having an x-ray generator and a CT detection system positioned within the axial gap between the at least two detector rings. The system is configured to collect PET data and CT data on the same volume of interest substantially simultaneously.
摘要:
In a diagnostic imaging system (10), a monitor (50) monitors periodic biological cycles of the subject (14). A trigger point detector (60) detects a time (t1, t2, . . . , tn) of a common, reoccurring reference point (R1, R2, . . . , Rn) in each periodic cycle of the subject (14). A sequence selector (62) selects a sequence (64) of nominal sampling segments (Si, S2, . . . , Sn). An adjustor (70) adjusts duration of each nominal sampling segment (Si, S2, . . . , Sn) to coincide with the times of detected reference points (R1, R2, . . . , Rn). A scaling processor (72) scales each adjusted segment based on a difference in duration between the corresponding nominal (Si, S2, . . . , Sn) and adjusted sampling segments (S′i, S′2, . . . , S′n).