Abstract:
An optical image lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has an object-side surface being convex. The second lens element with positive refractive power has an image-side surface being convex. The fourth lens element has an image-side surface being concave. The fifth lens element with positive refractive power has an object-side surface being concave and an image-side surface being convex. The sixth lens element with negative refractive power has an image-side surface being concave in a paraxial region thereof and including at least one convex shape in an off-axial region thereof. The two surfaces of each of the fifth lens element and the sixth lens element are aspheric.
Abstract:
A projection lens system having a magnification side and a reduction side, which projects light from a conjugation surface on the reduction side onto a conjugation surface on the magnification side. The projection lens system includes a focus tunable component and a lens assembly, wherein the lens assembly includes a plurality of lens elements, and at least one surface of at least one of the lens elements includes at least one inflection point.
Abstract:
A photographing lens assembly includes six lens elements which are, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with negative refractive power has an image-side surface being concave in a paraxial region thereof. The sixth lens element has an image-side surface being concave in a paraxial region thereof, wherein the image-side surface of the sixth lens element has at least one convex critical point in an off-axis region thereof, and both an object-side surface and the image-side surface of the sixth lens element are aspheric.
Abstract:
The present disclosure provides an optical imaging lens, comprising, in order from an object side to an image side: a first lens element with positive refractive power having an image-side surface being convex in a paraxial region thereof; a second lens element; a third lens element having positive refractive power; a fourth lens element; a fifth lens element with positive refractive power having an object-side surface being concave in a paraxial region thereof, an image-side surface being convex in a paraxial region thereof, and both the object-side surface and the image-side surface being aspheric; and a sixth lens element having an image-side surface being concave in a paraxial region thereof, at least one convex shape in an off-axial region on the image-side surface, and both an object-side surface and the image-side surface being aspheric. There are a total of six lens elements.
Abstract:
An optical imaging lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element has negative refractive power. The second lens element has negative refractive power. The third lens element has positive refractive power. The fourth lens element has positive refractive power. The fifth lens element has negative refractive power. The seventh lens element has an object-side surface and an image-side surface being both aspheric, wherein at least one of the object-side surface and the image-side surface of the seventh lens element includes at least one inflection point.
Abstract:
An optical photographing assembly includes, in order from an object side to an image side along an optical axis, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The third lens element has at least one of an object-side surface and an image-side surface being aspheric. The fourth lens element has at least one of an object-side surface and an image-side surface being aspheric. The fifth lens element has at least one of an object-side surface and an image-side surface being aspheric, wherein at least one of the object-side surface and the image-side surface of the fifth lens element includes at least one inflection point.
Abstract:
An optical image lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has an object-side surface being convex. The second lens element with positive refractive power has an image-side surface being convex. The fourth lens element has an image-side surface being concave. The fifth lens element with positive refractive power has an object-side surface being concave and an image-side surface being convex. The sixth lens element with negative refractive power has an image-side surface being concave in a paraxial region thereof and including at least one convex shape in an off-axial region thereof. The two surfaces of each of the fifth lens element and the sixth lens element are aspheric.
Abstract:
A photographing optical lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with negative refractive power has a concave image-side surface. The second lens element with negative refractive power has a concave image-side surface. The third lens element has positive refractive power. The fourth lens element with positive refractive power has a convex image-side surface, wherein two surfaces of the fourth lens element are both aspheric. The fifth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein two surfaces of the fifth lens element are both aspheric.
Abstract:
An image capturing lens system includes, in order from an object side to an image side: a first lens element with positive refractive power having a convex object-side surface; a second lens element with negative refractive power; a third lens element having an object-side surface and an image-side surface which are both aspheric; a fourth lens element with negative refractive power having an object-side surface and an image-side surface which are both aspheric; a fifth lens element having an object-side surface and an image-side surface which are both aspheric; and a sixth lens element having a concave object-side surface and a convex image-side surface which are both aspheric. With such arrangements, the convergent capability is mainly contributed from the object side of the lens assembly for higher portability of the lens system. Additionally, the peripheral image curve can be prevented while correcting the chromatic aberration and the peripheral image focus.
Abstract:
An optical photographing assembly includes, in order from an object side to an image side along an optical axis, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The third lens element has at least one of an object-side surface and an image-side surface being aspheric. The fourth lens element has at least one of an object-side surface and an image-side surface being aspheric. The fifth lens element has at least one of an object-side surface and an image-side surface being aspheric, wherein at least one of the object-side surface and the image-side surface of the fifth lens element includes at least one inflection point.